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ABSTRACT 
 

DNA methylation is the most common epigenetic phenomenon that controls gene regulation. In animals, it has been implicated in 
a number of biological phenomena, including genomic imprinting, X- chromosome inactivation, tissue specific gene expression, 
silencing transposable elements and regulation of gene expression. In plants the function of DNA methylation is well known in 
silencing of transgenes, transposons and pseudogenes. DNA methylation has also been characterized by self-incompatibility and 
maternal inheritance. Alteration in DNA methylation is associated with various human diseases. DNA methylation plays 
fundamental roles in the regulation of gene expression and is essential for plant and animal development. In animals, Dnmt1, 
Dnmt3a and Dnmt3b maintain the methylation whereas plants have three classes of DNA methyltransferases that maintain the 
methylation pattern. In this review, we discuss the role of mammalian and plant DNA methyltransferases, focusing on their 
structural and functional features as well as their roles in gene regulation. 
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INTRODUCTION 
 
The discovery of DNA in the 20th century is a landmark 
finding in molecular biology research. It is in the form of four 
functional nitrogenous bases (A, T, G and C) that encode the 
molecular message of life. Out of the four nitrogenous bases, 
cytosine and adenine are usually found in methylated forms. 
The methyl group on the 5th carbon of cytosine is so plentiful 
that it is called as the 5th base of DNA. The methylation in 
cytosine is frequently found on CpG islands in animals, but in 
case of plants in addition to CpG, CpHpG and CpHpH sites are 
also the hot spots for cytosine methylation. Jhonson and Coghil 
(1925) first reported 5-methylcytosine as a constituent of 
nucleic acid. Later on Wyatt (1950) reported its existence in 
plants. The presence of methyl cytosine in plants and animals 
indicates that this must have an important role in gene 
regulation. With the advancement of science, when the 
transcriptome and methylome data were analyzed, it was found 
that DNA methylation in most of the cases is inversely related 
to the rate of transcription. So cytosine methylation is a part of 
gene silencing machinery. Intensive studies on DNA 
methylation reveal that it controls X chromosome inactivation, 
silences transposons, psuedogenes, repeat elements, imprinted 
genes and is also responsible for self-incompatibility in plants. 
Recent studies on genome wide methylation indicate that 
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pattern and amount of DNA methylation regulate the 
expression of a gene. Interestingly, the methylation pattern is 
inherited from parents to progeny. 
 

Gene body methylation and Promoter DNA methylation 
 
The functional unit of a gene contains two parts, the promoter 
and the body. The promoter drives the expression of the gene, 
whereas the body contains the coding part that makes a 
functional protein. Higher eukaryotes show a biased 
methylation pattern in these two parts. DNA methylation in the 
promoter region inhibits the binding of transcription factor to 
the cis acting element and regulates the gene expression. The 
methylation of promoters is associated with tissue specific 
expression (Zhang et al., 2006). DNA methylation in the 
coding region of the gene is called gene body methylation. 
Although the function of gene body methylation is not yet 
clear; it is still believed that it has an important role in gene 
regulation, including splicing and preventing aberrant 
expression of the gene by intergenic promoters (Takuno and 
Gaut 2011). Most of the body methylated genes encode for 
catalytic enzymes (Zhang et al., 2006). This suggests that 
plants have evolved to regulate the expression of catalytic 
enzymes at the level of the epigenome. The mammalian genes 
contain small transposons and repetitive elements within the 
coding region which are usually methylated. In contrast plants 
do not contain such elements, but still they show a high degree 
of cytosine methylation in the coding region. About one third 
of the genes in Arabidopsis show high level of DNA 
methylation in the gene body as compared to the promoter 
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(Zhang et al., 2006). Another interesting fact is that the 3’ and 
5’ regions of the constitutively expressed genes are hypo-
methylated, suggesting the role of DNA methylation in 
transcriptional initiation and termination (Tran et al., 2005; 
Zhang et al., 2006). The body methylated genes are larger in 
size as compared to the unmethylated genes and are 
functionally more important (Takuno and Gaut et al., 2011). 
DNA methylation in the promoter region regulates the 
expression of the gene. Many transcription factors bind to cis 
acting elements in the promoter, but due to methylation in 
promoter region the transcription factors are unable to bind to 
these the elements. The promoter methylated genes show 
tissue specific activation (Zhang et al., 2006). 
Hypermethylation of the promoters represses the gene 
expression whereas hypomethylation leads to activation. In 
Arabidopsis hypermethylation in the promoters of the 
MAPK12, GSTU10 and BXL1 genes in callus cells leads to 
silencing (Berdasco et al., 2008). Promoter methylation is 
MET1 and DRM2 dependent as it usually occurs at CpG sites 
(Berdasco et al., 2008). In mammals the proximal region of the 
genes encoding Trefoil Factor 1 (TFF1) and Estrogen Receptor 
a (ERa) could be partially methylated by treatment with 
deacetylase inhibitors, suggesting the possibility of dynamic 
changes in DNA methylation. These promoters show cyclic 
methylation and demethylation of CpG dinucleotides which 
regulate their expression (Kangaspeska et al 2008). In maize, 
the promoter of phoshoenolpyruvate carboxylase (PEPC) gene 
is hypermethylated in roots and light induces demethylation of 
this promoter in mesophyll cells (Tolley et al., 2011). 
 

DNA methyltransferases in animals 
 
DNA methylation plays an important role in epigenetic 
signaling, especially in the regulation of gene expression by 
modulating the dynamics of chromatin structure. In animals, 
DNA methylation occurs at the 5th carbon of cytosine residue 
in CpG islands. In mammals, three DNA methyltransferases 
are present, named as Dnmt1, Dnmt3a and Dnmt3b. In 
addition to these, another protein without catalytic activity, 
called Dnmt3L is also present. The DNA methyltransferases in 
mammals contain a large multi-domain N-terminal part having 
a regulatory function, and a C-terminal catalytic part (Figure1). 
The N-terminal part is essential for nuclear localization of 
these enzymes and mediates their interactions with other 
proteins, DNA and chromatin. The smaller C-terminal part 
contains the active site of the enzyme and ten amino acid motif 
conserved for all DNA methyltransferases (Jeltsch et al., 
2002). The catalytic domains of all DNA methyltransferases 
share a common structure, called “AdoMet-dependent 
methyltransferase fold” (Cheng et al., 2008). Besides the 
conservation in the structure, DNA methyltransferases share an 
important mechanistic similarity; they all flip their target base 
out of the DNA helix and bury it in a hydrophobic pocket of 
the active site. The catalytic mechanism of C5 DNA 
methyltransferases involves the nucleophilic attack of the 
enzyme on the sixth position of the cytosine by the catalytic 
cysteine residue located in motif-IV (PCQ motif), which leads 
to the formation of a covalent bond between the enzyme and 
the substrate base. This reaction increases the negative charge 
density at the C5 atom of the cytosine, which attacks the 
methyl group bound to AdoMet. 
 

Dnmt1 (DNA methyltransferase1) 
 

Dnmt1 is the well characterized enzyme of mammalian 
systems. It shows a preference for hemimethylated DNA over 

unmethylated DNA and is localized at DNA replication foci 
during the S phase (Goyal et al., 2006). This suggests that it is 
a maintenance methyltransferase. It is constitutively expressed 
in proliferating cells and is the major DNA methyltransferase 
in somatic tissues (Robertson et al., 2000). The expression of 
Dnmt1 varies in a cell-cycle-dependent manner. It expresses 
maximum during the S phase (Kimura et al., 2003). It is also 
regulated by post-transcriptional processes (Torrisani et al., 
2007). Dnmt1 is distributed throughout the nucleus during 
interphase, whereas in the early and mid S-phase, it gets 
localize to the replication foci in cells, actively synthesizing 
DNA. Different isoforms of Dnmt1 have been identified. 
Besides Dnmt1, which is present in most somatic cells, two 
tissue-specific Dnmt1 variants called Dnmt1o (Dnmt1 oocyte) 
and Dnmt1p (Dnmt1 pachytene), have been described in 
oocytes and spermatocytes, respectively (Mertineit et al., 
1998). Dnmt1o is an oocyte-specific splicing isoform of 
Dnmt1 that lacks the first N-terminal domain. This isoform 
shows higher stability than Dnmt1, which could explain its use 
during oocyte growth and maturation (Ding et al., 2002). It can 
functionally replace Dnmt1 in somatic cells, because mice 
expressing Dnmt1o instead of Dnmt1 in all somatic tissues are 
phenotypically normal (Ding et al., 2002). Interestingly, 
Dnmt1o is localized to the cytoplasm during the 
preimplantation development of the embryo, except in the 
eight-cell stage, in which it was reported to be transiently 
translocated to the nucleus (Carlson et al., 1992; Ratnam et al., 
2002). Dnmt1 shows a preference for hemimethylated DNA 
over unmethylated substrate, supporting its role as a 
maintenance methyltransferase (Goyal et al., 2006). Its 
intrinsic preference for hemimethylated DNA has been 
estimated to be about 30-40 fold (Jeltsch et al., 2006).  
 
The preference for hemimethylated sites is due to an 
interaction of hemimethylated CG sites with the active center 
of the enzyme, followed by methylation-specific 
conformational changes of the enzyme, leading to the 
activation of the enzyme. The detailed molecular mechanism 
of the recognition of a methylated cytosine in the non-target 
DNA strand of the CG site is not known. Dnmt1 is responsible 
for the re-establishment of DNA methylation after DNA 
replication. The enzyme occupies a position at the replication 
fork, where it works as a molecular copy machine, and quickly 
methylates the hemimethylated CG dinucleotides, thereby 
restoring the original methylation pattern. It is a high fidelity 
enzyme, able to methylate long stretches of DNA without 
dissociation (Vilkaitis et al., 2005; Goyal et al., 2006). 
Interestingly, methylation is possible only in one strand of the 
DNA; Dnmt1 does not swap its target strand while moving 
along its substrate. These properties prepare the enzyme to 
follow DNA replication and to methylate the new DNA strand 
before the chromatin is reassembled. In addition to its well-
known role as a maintenance DNA methyltransferase, Dnmt1 
is also required for de novo DNA methylation. It shows 
allosteric regulation. The binding of unmethylated DNA at N-
terminal region reduces the activity of the enzyme whereas 
binding of methylated DNA increases its activity (Pradhan and 
Esteve2003; Svedruzic and Reich 2005). This suggests that the 
methylated regions of the genome tend to be more methylated 
and the unmethylated regions lose methylation (Eckhardt et al., 
2006). Another study suggests that the phosphorylation at the 
515th serine of N-terminal domain enhances the catalytic 
activity of the enzyme by an allosteric process (Goyal et al., 
2007). Dnmt1 is an important part of the epigenetic network as 
it interacts with many components of the silencing machinery, 
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such as the histone deacetylases (HDAC1 and HDAC2), DNA 
methyltransferases (Dnmt3a, and Dnmt3b), methyl CpG 
binding domain proteins (MeCP2), transcription factors (Rb 
and E2F1), histone lysine methyltransferases (Suv39H1, the 
SET7/9, G9a and EZH2) and heterochromatin protein1 (HP1) 
(Fuks et al.2000; 2003 Robertson et al., 2000, Rountree et al., 
2000, Kim et al., 2002, Kimura et al., 2003, Esteve et al., 
2006, Vire et al., 2006, Bostick et al.2007, Sharif et al., 2007, 
Jung et al., 2007). Recent studies identified itsinvolvement 
inimpairment of wound healing intype 2 diabetes by Dnmt1-
dependent regulation of hematopoietic stem cells (Yan et al 
2018). 
 
Dnmt 3 (DNA methyltransferase3) 
 
The mammalian de novo methyltransferase Dnmt3, family 
comprises three members: Dnmt3a, Dnmt3b and Dnmt3L. The 
first two are mostly responsible for the establishment of DNA 
methylation. Dnmt3L is catalytically inactive and functions as 
a regulatory factor in germ cells. Both Dnmt3a and Dnmt3b do 
not display any significant preference between hemimethylated 
and unmethylated DNA (Okano et al., 1998; Gowher et al., 
2001). However there are some reports that they also play a 
role in the maintenance of DNA methylation at 
heterochromatic regions (Kim et al., 2002, Liang et al., 2002, 
Chen et al.2003; Jeong et al., 2009). Like other 
methyltransferases the Dnmt3 enzymes also possess a N-
terminal regulatory part and a C-terminal catalytic part 
harboring the conserved C5 DNA MTases motifs. Dnmt3a 
interacts with many proteins, such as the transcription factors 
PU.1, Myc, RP58, histone deactetylase HDAC1, 
heterochromatin protein HP1, histone methyltransferases, 
SUV39H1, SETDB1, EZH2, methyl CG binding protein 
MBD3 and chromatin remodelling factor Brg1 (Fuks et al., 
2001; Suzuki et al., 2006, 2006; Li et al.2006; Vire et al., 
2006). Dnmt3a, Dnmt3b and Dnmt3L have recently been 
shown to interact specifically with the N-terminal part of 
histone H3 tails unmodified at lysine 4, the binding being 
disrupted by the methylation of H3 at K4 residue (Ooi et al., 
2007; Otani et al., 2009). Although Dnmt3a and Dnmt3b 
methylate cytosine residues predominantly in the CG context, 
but there are reports that both enzymes can also modify 
cytosines in a non-CG context (Ramsahoye et al., 2000; 
Gowher and Jeltsch 2001).  
 
The methylated non-CG sites are found in ES cells (Embryonic 
Stem cells), where Dnmt3a and Dnmt3b enzymes are highly 
expressed, but not in the fetal lung fibroblasts or monocytes, 
where Dnmt3 enzymes are down-regulated (Lister et al., 2009; 
Laurent et al., 2010). Dnmt3a and Dnmt3b show strong 
preferences for methylation of CG sites embedded into 
different flanking sequences. Dnmt3a and Dnmt3b prefer 
methylation at CpG sites when the flanking region contain 
purine bases at the 5’-end of the CG site, whereas pyrimidines 
were favored at its 3’-end (Handa and Jeltsch 2005). Dnmt3a 
gene polymorphism contributes to daily life stress 
susceptibility and mutation of Dnmt3a leads to genome 
instability (Barliana et al 2017: Banaszak et al 2017).Mutations 
in the human Dnmt3b gene cause an autosomal disease, called 
ICF (Immunodeficiency, Centromere instability, Facial 
abnormalities) syndrome (Okano et al., 1999, Hansen et al., 
1999). Mutations in Dnmt3b protein result either in the 
reduction of the catalytic efficiency of the enzyme or in 
alteration of its localization, causing specific loss of DNA 
methylation at satellites 2 and 3 of the pericentromeric regions 

of chromosomes 1, 9 and 16. The hypomethylation of these 
regions leads to recombination events, resulting in 
chromosomal rearrangements. Dnmt3L knockout transgenic 
mice do not show discernible morphological abnormalities 
(Hata et al., 2002). However, male mice lacking Dnmt3L are 
sterile, because they fail to produce mature sperms, whereas 
male germ cells lacking Dnmt3L show reactivation of 
retrotransposons of the LINE-1 (long interspersed nuclear 
element 1) and IAP (Intracisternal A particles) classes, severe 
defects in meiosis, which result in the loss of all germ cells 
(Bourc’his and Bestor 2004; Webster et al., 2005).  
 
The Dnmt3L knockout phenotype in female mice is different 
because females are fertile, but fail to deliver viable pups and 
the developing embryos die as a result of defects in the 
development of the neural tubes. Loss of Dnmt3L leads to 
specific hypomethylation of maternally imprinted genes 
(Bourc’his et al., 2001; Hata et al.2002). Dnmt3a, together 
with Dnmt3L is required for the proper establishment of 
imprinting during gametogenesis. Both enzymes are involved 
in the methylation of different subsets of repeat elements. 
Dnmt3b is responsible for the methylation of pericentromeric 
minor satellite repeats. Constitutive or conditional deletion of 
Dnmt3b, but not Dnmt3a, in mouse embryonic fibroblast 
(MEF) cells results in partial loss of DNA methylation 
throughout the genome. Demethylation leads to genomic as 
well as chromosomal instability (Dodge et al., 2005). Dnmt3a 
and Dnmt3b are highly expressed in embryonic tissues and 
undifferentiated ES cells and down-regulated in differentiated 
cells. Both Dnmt3a and Dnmt3b are stably associated with 
chromatin containing methylated DNA (Jeong et al., 2009), 
including mitotic chromosomes, and localize to 
pericentromeric heterochromatin (Chen et al., 2004; Ge et al., 
2004). The nuclear and subnuclear localization of Dnmt3L 
depends on its interaction with Dnmt3a or Dnmt3b. In the 
absence of Dnmt3a and Dnmt3b, Dnmt3L is distributed 
diffusely throughout the nucleus and cytoplasm, but after 
binding to Dnmt3a it concentrates in chromatin foci (Nimura et 
al., 2006). Sumoylation of Dnmt3a and Dnmt3b has been 
reported in the N-terminal domains of the enzymes. 
Sumoylation of Dnmt3a disrupts its ability to interact with 
histone deacetylases (Kang et al 2001, Ling et al 2004; Li et al 
2007). 
 
Enzymes involved in DNA methylation in plants 
 
The methyltransferases in plants can be broadly divided into 
two major classes, the de novo methyltransferase and 
maintenance methyl transferases. Methylation of fully 
unmethylated DNA is called de novo methylation whereas 
methylation of hemi methylated DNA, produced after DNA 
replication is called maintenance methylation. Both the types 
are essential for plant development and successful completion 
of its life cycle. The methyltransferases discovered so far have 
two domains, the N terminal regulatory domain and the 
catalytic C terminal domain. Theplant methyltransferases 
belong to four families according to their domain arrangement 
namely MET, DRM, CMT and Dnmt2. The MET and CMT 
are the maintainance methyltransferases whereas DRM is a de 
novo methyl transferase. 
 
DRM (Domain Rearranged Methyl transferase) 
 
Domain Rearranged Methyltransferase (DRM) enzymes are 
responsible for de novo DNA methylation of unmethylated 
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DNA. This class of enzymes is present only in plants, although 
they show homology to mammalian DNMT3 (Cao et al., 
2000). The DRM enzymes differ from Dnmt in having a 
unique N-terminus containing an ubiquitin associated domain 
(UBA). In the model plant Arabidopsis there are three DRM 
enzymes present (DRM1, DRM2 and DRM3). Studies on the 
mutants of DRM1 and DRM2 suggest that these two enzymes 
are responsible for cytosine methylation in CHG and CHH 
sites and have lesser roles in CG methylation(Cao and 
Jacobsen 2002). Tobacco DRM methylates CHG and CHH 
sites with very less activity towards CG sites. This enzyme 
prefers unmethylated DNA rather hemimethylated DNA 
(Wada et al., 2003). The DRM1 and DRM2 double mutant do 
not loose methylation pattern, but after many generation they 
block CHG methylation. The phenotype of the double mutant 
is similar to the mutants of small RNA-related genes, which 
suggest that DRM may be involved in RNA directed DNA 
methylation (Cao et al., 2003; Chen et al.2004; Zilberman et 
al., 2004). AtDRM2 is also involved in nucleolar dominance 
and rRNA gene silencing through RdDM (Preuss et al., 2008). 
DRM2 interacts with RDM1 (RNA directed DNA 
Methylation1) and AGO4 suggesting its involvement in RdDM 
(Gao et al 2010; Zhong et al 2014). The dimerization of DRM2 
is required for its catalytic activity. In rice and Arabidopsis 
DRM2 interacts with ATP dependent RNA helicase OseIF4A 
through ubiquitin-associated domain (Dangwal et al 2013). 
These two proteins associated at the target sites for RdDM. 
 
MET1 (methyl transferase1) 
 
In plants the major maintenance methyltransferase is MET1 
(methyltransferase 1), which shows homology with mouse 
Dnmt1 (Finnegan and Dennis 1993). This protein has a large N 
terminal regulatory domain and a NLS signal. MET1 also 
contains a bromo adjacent homology (BAH) domain, which is 
supposed to be involved in protein-protein interaction 
(Callebaut et al., 1999). In Arabidopsis there are four members 
present in MET family (METI, METIIA, METIIB and 
METIII) (Genger et al., 1999). The met1 mutant of 
Arabidopsis shows abnormal phenotype, like late flowering 
and reduced fertility (Kankel et al., 2003; Saze et al., 2003). 
The mutant plant also shows reduction in CG methylation in 
the genome (Kankel et al., 2003). Global transcript level in 
met1 mutant shows increased level of transcription in both 
methylated and unmethylated genes (Zilberman et al., 2007), 
and few genes show misexpression such as IBM1 (Saze et al., 
2008), sadhu6-1 and RPS (Singh et al.2008). During 
gametogenesis MET1 maintains the methylation status. Loss of 
MET1 leads to passive DNA demethylation (Saze et al., 2003). 
MET1 is also important for maintaining imprinted genes like 
FWA and MEDEA (Xiao et al., 2003, Kinoshita et al., 2004; 
Pien et al., 2007). MET1 interacts with histone deacetylase6 
through the BAH domain and regulate transposone silencing 
(Liu et al 2012). MET1 interacts with MEA1, a histone 
methyltransferase and is part of Fertilization-Independent Seed 
Polycomb Repressive Complex 2 (FIS-PRC2) and is involve in 
repression of autonomous endosperm development (Schmidt et 
al 2013). 
 

CMT (chromo methyl transferase) 
 
This class of methyltransferases is unique to plants and its 
members mainly control non CG methylation (Cao and 
Jacobsen 2002). These enzymes contain a conserved region of 
about 60 amino acids residues called chromodomain in 

between II and IV motifs. The regulatory region contain a 
BAH domain which is similar to other methyltransferases. The 
chromodomain is also found in some heterochromatin proteins 
and polycomb group of proteins. This suggests that these 
enzymes have role in methylating DNA in heterochromatin 
region of the genome (Eissenberg et al., 2001; Papa et 
al.2001). In Arabidopsis three genes represent this class of 
enzymes (CMT1, CMT2, and CMT3). Mutation in CMT3 locus 
leads to loss of global non-CG methylation at repetitive 
centromeric region and activation of transposon. The mutant 
also shows decreased methylation of SUPERMAN and 
Phosphoribosyl Anthranilate Isomerase (PAI) loci in 
Arabidopsis (Lindroth et al., 2001; Bartee et al., 2001). CMT 
is also essential for the silencing of retroposon like Ta3 
(Lindroth et al., 2001; Tompa et al., 2002). CMT3 is regulated 
by post transcriptional modifications. Two E3 ligase, a 
ubiquitin ligase, JMJ24 and a SUMO ligase, SIZ1 interacts 
with CMT3 (Kim et al 2015; Deng et al 2015). The 
SUMOlyzation enhances the activity of CMT3 whereas 
ubiquitination triggers proteasomeal degradation of CMT3. 
 

Conclusion and future prospect 
 
DNA methylation is an important epigenetic maker and an 
integral part of the gene regulation. DNA methylation plays 
essential role in tissue and organ differentiation by regulating 
stage specific gene expression. Recent technical advances such 
as whole-genome bisulphite sequencing generated large-scale 
data for epigenetic modifications and extended our view to a 
genome-wide scale. This review provides important insight for 
diverse fields such ashuman health, plant development and 
evolution. 
 

 
 

Figure 1. Domain organization of DNA methyltransferases 
 
Domain architecture of plant and mammalian DNA 
methyltransferases showing the catalytic and regulatory 
domain.. The different domains are indicated by different 
colored boxes, indicated in the below.  
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