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ABSTRACT 
 

In Medical Science, the multiplicative connectivity indices are used in the analysis of drug molecular structures which are helpful 
for medical scientists and pharmaceutical scientists to find out the chemical and biological characteristics of drugs. In this paper, 
we introduce the multiplicative product connectivity reverse index, multiplicative sum connectivity reverse index, first 
multiplicative atom bond connectivity reverse index and multiplicative geometric-arithmetic reverse index of a molecular 
structure. Furthermore, we compute the multiplicative connectivity reverse indices of two types of dendrimer nanostars. 
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INTRODUCTION  

 
In this paper, we consider only a finite, simple connected graph with a vertex set V(G) and an edge set E(G). The degree dG(v) of a 
vertex v is the number of vertices adjacent to v. Let (G)((G)) denote the maximum (minimum) degree among the vertices of G. 
The reverse vertex degree of a vertex u in G is defined as cu = (G) – dG(u) + 1. The reverse edge connecting the reverse vertices u 
and v will be denoted by uv. We refer to [1] for undefined term and notation. 
 
A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of this graph represents an atom 
to molecule and its edges to the bound between atoms. A topological index is a numerical parameter mathematically derived from 
the graph structure. Numerous topological indices have been considered in Theoretical Chemistry, see [2].  
 
The Revan vertex degree of a vertex u in G is defined as rG(u) = (G) + (G) – dG(u). The Revan edge connecting the Revan 
vertices u and v will be denoted by uv. In [3], Kulli introduced the first and second Revan indices of a graph G. Recently some 
Revan topological indices were studied, for example, in [4, 5, 6]. 
 
In [7], Kulli introduced the multiplicative connectivity Revan indices as follows: 
 
The multiplicative product connectivity Revan index of a graph G is defined as 
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The multiplicative sum connectivity Revan index of a graph G is defined as 
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The first multiplicative atom bond connectivity Revan index of a graph G is defined as 
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The multiplicative geometric-arithmetic Revan index of a graph G is defined as 
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Motivated by the definitions of the multiplicative connectivity Revan indices and their applications, we introduce the multiplicative 
connectivity reverse indices as follows: 
 
The multiplicative product connectivity reverse index of a graph G is defined as 
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The multiplicative sum connectivity reverse index of a graph G is defined as 
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The first multiplicative atom bond connectivity reverse index of a graph G is defined as 
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The multiplicative geometric-arithmetic reverse index of a graph G is defined as 
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Recently many multiplicative topological indices were studied, for example, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Also some 
connectivity indices were studied, for example, in [18, 19, 20, 21, 22, 23]. In the this paper, the multiplicative connectivity indices 
of two families of dendrimer nanostars are computed. For more information about these dendimer nanostars see [24]. 
 
Observation 1. Let G be the graph of a chemical compound. If (G)=1, then cu = rG(u), where u is vertex of G. 
 
Results for Dendrimer Nanostars D1[n]. 
 
In this section, we consider a family of dendrimer nanostars with n growth stages, denoted by D1[n], where n�0. The molecular 
graph of D1[4] with 4 growth stages is depicted in Figure 1.  
 

 
 

Figure 1. The molecular graph of D1[4]. 
  

Let G be the molecular graph of dendrimer nanostar D1[n]. From Figure 1, it is easy to see that the vertices of dendrimer nanostar 
D1[n] are either of degree 1, 2 or 3. Therefore �(G) = 3 and cu = 4 – dG(u). By calculation, we obtain that G has 2n+4 – 9 vertices 
and 18 × 2n – 11 edges. Also by calculation, we partition the edge set E(D1[n]) into three sets as follows:  
 

E13 = {uv  E(G) | dG(u) = 1, dG(v) = 3}|E13| = 1. 
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E22 = {uv  E(G) | dG(u) = dG(v) = 2}|E22| = 6 × 2n – 2. 
 
E23 = {uvE(G) | dG(u) = 2, dG(v) = 3}|E23| = 12 × 2n – 10. 
 
The we ensure that there are three types of reverse edges in D1[n] as follows: 
 
CE31 = {uvE(G) | cu = 3, cv = 1},|CE31| = 1. 
 
CE22 = {uvE(G) | cu = cv = 2},|CE22| = 6 × 2n – 2. 
 
CE21 = {uv  E(G) | cu = 2, cv = 1},|CE21| = 12 × 2n – 10. 
 
In the following theorem, we compute the multiplicative product connectivity reverse index of D1[n]. 
 
Theorem 1. The multiplicative product connectivity reverse index of a dendrimer nanostar D1[n] is given by 
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In the following theorem, we compute the multiplicative sum connectivity reverse index of D1[n]. 
 
Theorem 2. The multiplicative sum connectivity reverse index of a dendrimer nanostar D1[n] is given by 
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In the following theorem, we compute the first multiplicative atom bond connectivity reverse index of D1[n]. 
 
Theorem 3. The first multiplicative atom bond connectivity reverse index of a dendrimer nanostar D1[n] is given by 
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In the following theorem, we compute the multiplicative geometric-arithmetic index of D1[n]. 
 
Theorem 4. The first multiplicative geometric-arithmetic index of a dendrimer nanostar D1[n] is given by 
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Theorem 5. Let G be the graph of a dendrimer nanostar D1[n]. Then 
 
1) PCII(D1[n]) = PRII(D1[n]). 
2) SCII(D1[n]) = SRII(D1[n]). 
3) ABC1CII(D1[n]) = ABC1RII(D1[n]). 
4) GACII(D1[n]) = GARII(D1[n]). 
 
Proof: Since (G) = 1, the results follow from Observation 1. 
 
2. Results for dendrimer nanostars D3[n]. 
 
In this section, we consider of dendrimer nanostars with n growth stages, denoted by D3[n], where n�0. The molecular structure of 
D3[n] with 3 growth stages is shown in Figure 2.  
 

 
 

Figure 2. The molecular structure of D3[3] 
 
Let G be the graph of a dendrimer nanostar D3[n]. From Figure 2, it is easy to see that the vertices of dendrimter nanostar D3[n] are 
either of degree 1, 2 or 3. Therefore (G) = 3 and cu = 4 – dG(u). By algebraic method, we obtain that G has 24 × 2n – 20 vertices 
and 24 × 2n+1 – 24 edges. Also by algebraic method, we obtain that the edge set E(D3[n]) can be divided into four partitions:  
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 E13 = {uv  E(G) | dG(u) = 1, dG(v) = 3}|E13| = 3×2n. 
 E22 = {uv  E(G) | dG(u) = dG(v) = 2}|E22| = 12×2n – 6. 
 E23 = {uv  E(G) | dG(u) = 2, dG(v) = 3}|E23| = 24×2n – 12. 
 E33 = {uv  E(G) | dG(u) = dG(v) = 3}|E33| = 9×2n – 6. 
 
Thus there are four types of reverse edges in D3[n] as follows: 
 
 CE31 = {uv  E(G) | cu = 3, cv = 1},|CE31| = 3×2n. 
 CE22 = {uv  E(G) | cu = cv = 2},|CE22| = 12 × 2n – 6. 
 CE21 = {uv  E(G) | cu = 2, cv = 1},|CE21| = 24 × 2n – 12. 
 CE11 = {uv  E(G) | cu = cv = 1},|CE11| = 9 × 2n – 6. 
 
In the following theorem, we determine the multiplicative product connectivity reverse index of D3[n]. 
 
Theorem 6. The multiplicative product connectivity reverse index of a dendrimer nanostar D3[n] is given by 
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In the following theorem, we determine the multiplicative sum connectivity reverse index of D3[n]. 
 
Theorem 7. The multiplicative sum connectivity reverse index of a dendrimer nanostar D3[n] is given by 
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In the following theorem, we determine the first multiplicative atom bond connectivity reverse index of D3[n]. 
 
Theorem 8. The first multiplicative atom bond connectivity reverse index of a dendrimer nanostar D3[n] is given by 
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In the following theorem, we determine the multiplicative geometric-arithmetic reverse index of D3[n]. 
 
Theorem 9. The first multiplicative geometric-arithmetic reverse index of a dendrimer nanostar D3[n] is given by 
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Theorem 10. Let G be the graph of a dendrimer nanostar D3[n]. Then 
 
1)PCII(D1[n]) = PRII(D3[n]). 
2)SCII(D1[n]) = SRII(D3[n]). 
3)ABC1CII(D1[n]) = ABC1RII(D3[n]). 
4)GACII(D1[n]) = GARII(D3[n]). 
 
Proof: Since (G) = 1, the results follow from Observation 1. 
 
Definition 1. If the graph of a nanostructure S has a vertex of degree 1, then S is called Vedavin nanostruture. 
 
Observation. 2. For any Vedavin nanostructure S, the Revan index and corresponding reverse index of S coincide. 
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