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ABSTRACT 
 

In the paper a non-linear mathematical model is proposed and analyzed to discuss the combined harvesting policy for a prey predator community with 
ratio dependent functional response. Criteria for local stability, instability and global stability of the non-negative equilibria are obtained. In last an 
optimal harvesting to harvest prey-predator species is derived. 
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INTRODUCTION  

 
Almost in all prey–predator system considered in literature, predator response function is taken to be a function of prey population 
only. This may be a tenable assumption for an experimental situation where a single predator searches for prey in an area, but in 
real life it is likely that individual predators will interact with each other. Leaving aside, the issue of predator cooperation in 
hunting and subduing prey, it is likely that predator encounter will lead to competitive interactions. Intra–specific competitive 
interactions between individual predator can affect their birth and death rates and also the predator’s efficiency in finding and 
killing prey i.e. predator functional response. If predators encounter each other at a rate ‘b’, encounter prey at a rate ‘a’ and each 
encounter between predators results in wasted time ‘w’, then these assumptions lead to the formula given by Beddington (1975) 
 
 
 
 

where x and y are prey and predator densities respectively.  
 
Hassell and Varley (1969), using reparameterization w = w'b/a suggests the following form of functional response 
 
 
 
 
Again, using the logic that predators waste time in handling prey and dealing with other predators, that are added together to 
reduce the amount of time left for search. This logic leads to the following form for combined functional response 
 
 
 
 
where h is the handling time. 
 
This functional form was first proposed by Beddington (1975) and independently by De Angleis et.al. (1975).  
 
Now, assuming awy + ahx >>> 1 (where predator interference is very strong), we have 
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which is the Holling type II functional response, but with the ratio (x/ y) replacing prey density x. This form is known as ‘Ratio–
dependent functional response’. It is clear from the above form that predator density should have a strong effect on predator 
functional response. Many biological systems with following features can produce such predator dependence: 
 
 Group hunting by the predator, 
 Facultative and costly antipredator defense by the prey, 
 Density dependent and time consuming social interactions between predators, 
 Aggressive interactions between searching predators that encounter each other, and 
 A limited number of high quality sites where predator captures prey rapidly.  

 
Recently, there has been little work on Ratio–dependent theory, which can be roughly stated as that the per capita predator growth 
rate should be function of ratio of prey to predator abundance. This theory is strongly supported by numerous field and laboratory 
experiments and observations done by Arditi and Ginzburg [1] and Arditi et.al. [2]. Generally, a ratio dependent prey–predator 
model takes the following form: 
 

x (t) = xf(x) – yp(x/ y) , 

y (t) = (p(x/ y) – d)y,  x(0) > 0 , y(0) > 0, 
 
 
with                  yp(x/ y) = 0. 
 

When ,
K

x
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  this becomes a ratio dependent prey–predator model with Michaelis–Menten 

function response. 
 
This system was studied in detail by Hsu et.al. [5], Hsu and Hwang [4], and others. Geometrically the difference of prey–
dependent model and ratio dependent model are obvious, the former has a vertical predator isocline, while the later has a slanted 
one passing through the origin. Arditi and Ginzburg [1], Berryman [3] showed that the ratio–dependent models are capable of 
producing richer and more reasonable or acceptable dynamics. It has been also shown [6] that the ratio–dependent type models do 
not produce the so–called paradox of enrichment, which states that according to the Lotka–Vottera type predator–prey theory 
(with Michaelis–Menten Holling type functional response) enriching a predator–prey system will cause an increase in the 
equilibrium density of the predator but not in that of the prey, and will destabilize the community equilibrium. Another similar 
paradox is the so called “biological control paradox” which states that according to the classical predator–prey model, we cannot 
have both a low and stable prey equilibrium density, is also no longer valid for ratio–dependent systems. 
 
Kuang and Beretta [7] did qualitative analysis of global behaviors of solutions of a ratio–dependent predator–prey system. Hsu 
et.al. [5] discussed a three tropic ratio–dependent food chain model and its application in biological control process. They also 
provide scenarios when biological control is feasible and when it may fail. Keeping above facts in mind, in this paper, we propose 
and analyze a non–linear mathematical model of prey–predator community having ratio–dependent functional response with 
harvesting effort. The organization of paper is as follows: section 2 deals with mathematical model and some basic results. In 
section 3, existence of equilibria and their stability is discussed. An optimal harvesting policy is obtained in section 4, numerical 
calculation is done in section 5 and finally, a discussion is presented in section 6. 
 
The Mathematical Model 
 
We consider a prey–predator community where predation is governed by ratio–dependent functional response. It is assumed that 
the dynamics of prey population follows logistic model and is subjected to a dynamic harvesting. To maintain desired level of 
population, the regulatory agency imposes a tax s > 0 (negative value of s denotes subsidy) per unit biomass of the landed prey and 
predator population. Taking note of above, we propose a system of differential equations for model as follows: 
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with x(0) > 0,    y(0) > 0,   E(0) > 0. 

The functions Fi(x, y, z), i = 1, 2, 3 are defined for x > 0, y > 0, E  0 and 
0)E,y,x(

lim


 Fi(x, y, z) = 0. 

 
Here x(t) and y(t) are the concentrations of prey and predator population respectively and E(t) is the combined effort applied to 
harvest both prey and predator population at time t > 0. ‘r’ and ‘K’ are intrinsic growth rate coefficient and carrying capacity of 
logistically growing prey population. ‘’ is the constant uptake rate coefficient of predator at which it consumes prey and ‘’ is the 
intraspecific competitive coefficient among predators. ’’ (0 <  < 1) denotes the fraction of predation term that contributes in 
predator’s growth and‘d’ is the death rate coefficient for predator. q1 and q2 are the constant catchability coefficients for prey and 
predator population, ‘p1’ and ‘p2’ are the fixed price per unit of prey and predator population respectively, and ‘c’ is the fixed cost 
of harvesting population per unit of effort. The constant 0 is called stiffness parameter measuring the strength of reaction of effort 
to the perceived rent. Next there is a theorem for persistence and boundedness of solutions. 
 
Theorem 2.1: All solutions of the system (1) with initial conditions are non–negative and bounded. 
 
Proof: From system of eqs. (1), we have 
 

 
 
Since initially x(t), y(t) and E(t) are all positive and non–zero, therefore, from above condition and continuity of system we 
conclude that all solutions of system (1) are non–negative. 
 
Again from (1), on integration we get, 
 
 
 
 
 

as t      x(t)  K. 
 
Now, we consider,   = 0(p1 – s) x + 0(p2 – s) y + E,   then taking  p  max (p1, p2), and 
 
 
 
 
choosing < min(0c,d), on integrating and taking limit as t→∞ we get 
 
 
 
 
 

Hence, theorem is proved. 
 
The Mathematical Analysis  
 
It is easy to check that there exist five equilibrium points in which existence of trivial axial equilibrium P0(0,0,0) and axial 
equilibrium P1(K,0,0) are obvious. Other equilibrium points are  
 

 
 

and 
 
 
 
 

 

So, P2 exists when r >  – d > 0, which also implies  > d/.The condition for existence of P3 is x  < K, which on 
simplification gives 
 
                                                                     (2) 
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The above expression gives the upper bound for regulatory tax in the absence of predator. 
 Existence of P*(x*,y*,E*) : x*, y* and E* are the positive solutions of following algebraic equations 
 

 
 

Eliminating y from above equations, we get 
 

 
(which is a necessary condition for the existence of ( 0,y,x )). 

 

 

 
 
E  0, when x  x1, where x1 is the positive roots of following quadratic equation:  a1x

2 + a2x + a3 = 0, 
 

 
 
Again on eliminating y, we have 
 

 
 
when x  0, E  – d/ q2 < 0 and E  0, when x  x2   where 
 

 
 
So, the two isoclines given by eqs. (3) and (4) intersect at unique point (x*, E*) when condition (2) holds along with inequalities 
d <  < r    and      x2 < x1. 

 
Also for the existence of P*, we must also have 
 

 
 
The characteristic equation corresponding to P*(x*,y*,E*) can be written as      
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, b3 > 0 and b1b2–b3 > 0, then by Routh Hurwitz criteria, all roots of characteristic equation have 

negative real parts and P* is locally asymptotically stable equilibrium point.  
 
For global stability, we consider positive definite function V(x,y,E) as 
 
 
 
 
 

where k1, k2 are positive constants to be chosen suitably. 
 
Differentiating V with respect to time t along the solutions of system (1), we get 
 

 
+k20(E–E*)[(p1 – s)q1x + (p2 – s)q2y – c] 
 
 

 
Using equations giving interior equilibrium point P*(x*,y*,E*) and after some algebraic manipulations, and choosing 
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, above quadratic equation becomes 

 

 
 

So, V  is negative definite when 
 

 
 
which holds only when  
 

 
 
Also, the subset S of  such that  

The largest invariant set in this is *xx,)E,y,x{(  , y= y* and E = E*}. Hence by LaSalle’s invariance principle, P* is 

globally asymptotically stable with respect to all solutions initiating in the interior of the positive orthant.  
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Optimal Harvesting Policy 
 
Now, we derive the optimal policy that maximizes the net revenue to the society that is given by 
 
(x, y, E, s, t) = (p1q1x + p2q2y – c)E. 
 
Thus, our objective is to solve the optimization problem: 
 

 
 

where  subject to state equations of (1) and to the control constraint, 
 
smin  s  smax ,                                       (5) 
 
is the instantaneous annual rate of discount.  
 
To solve the above problem, we use Pontryagin’s Maximum Principle. The associated Hamiltonian function is given by  
 

 
           + 3(t)0E[(p1 – s)q1x + (p2 – s)q2y – c], 

where 1, 2, 3 are adjoint variables. 
 
For ‘H’ to be maximum on the control set (5), we must have 
 

0
H





, which implies 3(t) = 0.         (6) 

 
Now, from the maximum principle, we must have 
 

 
 
On rewriting above equations, we have 
 

 
 
From eqs. (6) and (9), we get      1q1x + 2q2y = e–t(p1q1x + p2q2y – c).                   (10) 
 
Now, considering interior equilibrium point P* and substituting the value of 2 from eq. (10), we get a differential equation 
 
 
 
 
A solution of above differential equation is given by 
 
 
                                                                           (11) 
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where 
 

 
 
Similarly we have 
 
 
                                                                (12) 
 
Where 
 
 
 
 
 
 
 
 
 
Now, from eq. (10), on substituting the values of 1 and 2, we get 
 

 
 

For an optimal effort, we have 
 
 
                                                                                              (14) 
 
Above two equations give the optimal equilibrium levels of prey–predator population i.e.  x* = x,y* = y 

 
Then the optimal equilibrium levels of effort and tax are given by 
 
 
 
 
 
 
 
 
 
Equation (10) can be written as 
 
 
 
 
 
Hence, the net economic revenue is zero when discounting factor is infinitely large. 
 
Numerical Example 
 
Let us consider the following hypothetical values of different parameters as below: 
 
r = 2         = 1          = 0.5 
K = 7       d = 0.1     q1 = 0.1 
 = 1        = 0.1      q2 = 0.1 
p1 = 10    p2 = 8        c = 6 
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Now for different values of tax, we have the following results: 

 
Table 1. Equilibrium level of prey population and arresting effect for different values of tax 

 

s x* y* E* 

0 5.1274 1.8981 3.6491 
2 4.8193 3.8855 1.7683 
4 4.5405 6.9728 0.9718 
6 4.2879 12.8560 0.2506 
8 4.0587 30.0000 –0.4042 

 
From above table, we see that the equilibrium level of prey population x* and effort E* decreases while the corresponding level of 
predator population y* increases as the tax increases. There exists a value of tax (6 < s < 8) imposed by the regulatory agency, for 
which the equilibrium effort level becomes zero and in this case prey–predator population remain unexploited. It can also be 
verified here that for above equilibrium values, all stability conditions hold and hence P*(x*,y*,E*) is stable equilibrium point for 
the parameter values taken above. Also the optimal equilibrium level of prey–predator population, harvesting effort and tax are 
obtained as 
 
x = 5.5975,      y = 0.0089, 
E = 3.9921,      s = –0.7306. 
 
Here, negative value of tax shows that regulatory agency should provide subsidies to maintain the optimal equilibrium level of 
population. 
 

DISCUSSION 
 
In the present paper, we have proposed and analyzed a nonlinear mathematical model to study the dynamics of a prey–predator 
community with ratio–depedent functional response and dynamic harvesting effort with tax as a control instrument to avoid the 
over exploitation of population. Ratio dependent functional form presents a real situation where predation is affected by both prey 
and predator population. We have shown persistence and boundedness of solutions. We have proved the existence of equilibrium 
points  under certain conditions. Interior equilibrium point P* is defined and stable under certain parametric conditions. The 
stability of the system implies that prey–predator population and harvesting effort settle down to their respective equilibrium level 
under certain conditions.  Using Pontryagin’s Maximum principle, an optimal policy to harvest prey–predator population with 
ratio–dependent functional response has been discussed and optimal equilibrium levels of prey–predator population, effort and tax 
have been obtained. It has been shown that the total user’s cost of harvest per unit effort is equal to the present value of marginal 
revenue of effort at the optimal equilibrium level. It has also been noted that increase in discount rate decreases the economic rent 
and even it may tend to zero if the discount rate tends to infinity. 
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