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ABSTRACT 
 

Big data is data set that cannot reasonably be handled by our traditional database or tools due to the large volume, velocity and 
variety. In this vast and complex data set outlier detection is very crucial aspect. A failure to detect outliers or their ineffective 
handling can have serious ramifications on the strength of the inferences drained from the exercise. This dissertation proposes a 
reliable and high throughput outlier detection technique which attempts to detect projected outlier in high dimensional data 
stream. Optimize ORION algorithm employs an innovative window based time model in capturing dynamic statistics from 
stream data, and novel data structure containing a set of top sparse subspaces to detect projected outlier effectively in low process 
time and less memory storage. This algorithm able to identifies a data point as an outlier if it resides in low density region. 
Optimized Orion Increase throughput 20% and enhance stability 25%. 
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INTRODUCTION 
 
Big data is often characterized by 3Vs the extreme volume of 
data, the wide variety of data types and the velocity at which 
the data must be processed. Although big data doesn't equate to 
any specific volume of data, the term is often used to 
describe terabytes, petabytes and even exabytes of data 
captured over time. And Outlier points indicate faulty data or 
certain set of data that might not be valid (Varun Chandola and 
Banerjee and Kumar). Detecting outliers gets even more 
difficult when the data is highly variable, the surface your data 
sits on is not flat, or your data exists in a three-dimensional 
setting. The bigger your dataset, the greater your chance of 
stumbling into an outlier. It’s practically a certainty you’ll find 
isolated, unexpected, and possibly bizarre data you never 
expected to see in your data. But how you respond to these 
outliers could mean the difference between big data success 
and failure. Outliers can be critically important to big data 
project. Depending on the context, it may be actively hunting 
for outliers, or may be trying to subdue them. In big data 
project, first need to detect the outliers. Taking the time to 
explore which approach works best for detection will give the 
best chance of finding success with big data project (Desai, 
2011). Outliers existing in high-dimensional data streams are 
embedded in some lower-dimensional subspaces.  
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Here, a subspace refers to as the data space consisting of a 
subset of attributes. These outliers are termed projected 
outliers in the high-dimensional space. The existence of 
projected outliers is due to the fact that, as the dimensionality 
of data goes up, data tend to become equally distant from each 
other. As a result, the difference of data points’ outlier-ness 
will become increasingly weak and thus undistinguishable 
(Vijayarni and Nithya, 2011). Only in moderate or low 
dimensional subspaces can significant outlier-ness of data be 
observed. Outlier detection for single streams compares a data 
point in a stream with respect to the history data points from 
that same stream in order to identify whether the data point is 
an outlier. In case of multiple data streams, such identification 
can be done either by (1) comparing the data point with the 
history data points from the same stream that carries the data 
point, (2) comparing the data point with the data points from 
the other correlated streams, or (3) using a combination of both 
(1) and (2). The opportunity of having multiple data streams to 
compare allows richer semantics across the data streams to be 
taken into consideration which would lead to better detection 
accuracy. The outliers may be of particular interest, such as in 
the case of fraud detection, where outliers may indicate 
fraudulent activity. Thus, outlier detection and analysis is an 
interesting data mining task, referred to as outlier mining or 
outlier analysis (Jae-Gil). A data stream is an infinite sequence 
of data points {Dt | t ≥ 0} with explicit or implicit timestamps. 
Many data stream applications involve monitoring, so that a 
particular data point is interesting only for a specific amount of 
time. Therefore, every data point has to be processed in time. 
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Data streams are often characterized by uncertainty because of 
unreliable communication and error (Hendrik Fichtenberger, 
2013). For multi-dimensional data streams, the number of 
dimensions makes outlier detection even more complicated. 
The most important problem in detecting multi-dimensional 
outliers is similarity measurement. Calculating the distances 
between data points is a popular approach to similarity 
measurement. This paper proposes an outlier detection 
algorithm for data streams, called Optimized Orion that 
addresses all their issues related to outlier detection in case of 
big data including transiency, temporal relation among data 
points, waiting time of data stream, throughput and overall 
storage cost (Pedro Pereir a Rodrigues et al., 2008). 
 
Background 

 
There are various techniques to detect outliers in big data. 
Orion technique is one of them. Orion detect a data point is an 
outliers if the data point has drastically different volume 
compared to other data point. Orion processes each data point 
from one stream. 
 
Orion goes through three phases. 
 
 Finding an appropriate projected dimension i.e. p-

dimension. 
 Computing the outlier metrics for data point DT. 
 Based on these metrics, determining if DT is an outliers or 

not. 
 
To find p-dimension, Orion uses an Evolutionary Algorithm 
(EA). Each data point has a value along p-dimension. If this 
value has less number of neighbors than the values of other 
data point thus it is very likely outliers. After that Orion adds 
new p-dimensions and removing the old ones and these new p-
dimensions again compare the data point to other data points of 
the data stream. So when any data point DT arrives, Orion 
picks the p-dimension that has smallest neighbor density to 
reveal the outlierness of DT. Orion uses two outlier metrics for 
DT. 
 
 Neighbor density 
 K-distance 
 
If data points have much fewer neighbor means it has smallest 
ND and largest K-distance compare to other data points then it 
must be an outlier. When a data point arrives, Orion updates 
the DDFs of all p-dimensions. Each p-dimension has a DDF 
based on the data points arrived after its creation. The DDF of 
a p dimension follows the DDF proposed in [7], which 
addresses transiency, temporal relation, uncertainty and 
concept drift for single-dimensional data streams, but is 
modified for a dynamic implementation that does not require 
the range of values to be known in advance. It is based on a 
kernel density estimator that estimates the DDF based on the 
projection of the data values on a p-dimension. For any p-
dimension, we use the DDF. Crossover finds two parent p-
dimensions with high fitness and creates a new individual that 
performs better than its parents. These two individuals are 
selected according to the rank selection scheme [8], in which 
the probability of selecting an individual is proportional to its 
fitness. According to Lemma 3, the linear combination of two 
p-dimensions produces a new p-dimension that has a smaller 
SD than at least one parent. 

 
 

Fig. 1. Outlier detection with p-dimensions 

 
Proposed work 
 
After having a review on the traditional work that was done in 
the field of outlier detection in big data it looks simple but is 
highly challenging due to following reasons: 
 
 This process hold data stream for long time period to detect 

p-dimension for every data point. 
 In case of big data velocity of data stream is very high so 

the problem of network jamming can also occur. 
 Waiting time of data stream also a big challenge. 
 In case of Orion, storage cost of data stream in detection 

process is also very high. 
 
First motivation of Optimized Orion is to perform operations 
on replica of data stream i.e. generally treated as waste in 
database. The second motivation of Optimized Orion is to 
avoid the effect of outliers by using roll back concept. 
 
Overview: To determine if a incoming data point DT is an 
outlier Optimized Orion goes through these phases: (1) 
Analyzing the data stream (2) Create replica of data stream 
RDS. (3) Make Free the original data for further processing (4) 
find out p-dimensions for replica RDT. (5) Using metrics to 
determine outlierness of data point DT. (6) If DT is an outlier 
then roll back that data point. 
 
Algorithm of Optimized Orion 
 

1. Initialize data stream DS. 
2. Create replica (RDS) of data stream DS. 
3. Make free original data stream DS for further 

processing. 
4. Determine appropriate p-dimension for RDS. 
5. Calculate neighbor density for each data point of the 

RDS. 
6. Prepare the density list. 
7. Calculate k-distance for data point. 
8. k- integral     k- integral (DT, k).’ 
9. If detect outlier ( n den, k-dis, h-center, v-center) 
10. Then is outlier    T else is outlier F 
11. End if 
12. If outlier     T then roll back DT else not. 
13. End if 
14. END. 

1205                              International Journal of Current Research in Life Sciences, Vol. 07, No. 02, pp.1204-1207, February, 2018                                                                        

 



Create replica of whole data stream and apply all the metrics 
on this replica and make free the original data stream for 
further processing and when data point will found guilty 
(Outlier) then roll back that data point. With the help of this 
algorithm delay will not occur and process is also safe because 
of roll back concept and do not have need to store the replica 
of data stream. We improve the overall throughput with less 
storage cost and low network traffic. 
 
Performance analysis 
 
Based on the result, it would essential to discuss about the 
performance of the proposed algorithm and other aspects 
related with the work. Here ten data stream is to be taken for 
both Optimized Orion and Orion protocols, which is 
implemented; number of sample data points 4000, maximum 
degree of freedom is 8000, and stability of network life time is 
also changed during the whole process. The parameter values 
for different configurations are given in Table 1. 
 

Table 1. 
 

Parameters Values Remarks for Optimized Orion 

Implemented data stream 10 For both protocol 
Number of data points 4000 For both protocol 
Degree of freedom 8000 For both protocol 
Stability 25% Enhanced 
Throughput 20% Increase 
Waiting Time 42% Reduce 

 
Waiting Time: Figure 2 shows the waiting time of the data 
streams using Optimized Orion technique. Waiting time For 
DS4 is 12 ms as shown in figure. The waiting times of data 
stream ensure that how much time consumes by pervious data 
stream for process. From the figure it can be clearly shown that 
the delay in the processing of data stream is quite low. 
 

 
 

Fig. 2. Waiting Time Graph 

 
Execution Time: Run time or execution time is the time 
during which program is running, in respect to other program 
lifecycle phases such as compile time, link time, and load time. 
Figure 3 shows the execution time graph. The time spends by 
the job actively using processor resources is its execution time. 
 
Throughput: Throughput is an important indicator of 
performance and quality of network connection. A high ratio 
of unsuccessful data packets will ultimately lead to lower 
throughput and degraded the performance. Figure 4 shows the 
throughput graph of Optimized Orion. With the help of 
Optimized Orion more data stream can be processed in 
comparison to Orion. And it also reduces the chance of the 
fault because Optimized Orion uses the roll back concept. 
 

 
 

Fig. 3. Execution time graph 
 

 
 

Fig. 4. Overall throughputs 
 
Overall Storage Cost 
 
Proposed Optimized Orion also reduce the overall cost of 
storage because we do not store the replica of data stream for 
future use and also release the original data stream. So the 
overall cost of storage is also reduces as shown in figure 5 
 

 
 

Fig. 5. Cost of Storage 
 
Conclusion 
 
Outlier detection for multi-dimensional data stream is 
relatively new area of research. Outlier detection for multi-
dimensional data stream posses’ critical challenges. Outlier 
detection requires similarity among data points but here we 
deal with big data base which deals with high verity of data 
points. In this dissertation we have proposed an effective and 
efficient outlier detection technique with high throughput and 
less waiting time, Optimized Orion. Optimized Orion is 
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designed for multiple data streams that may or may not be 
correlated. Unlike other approaches, Optimized Orion does not 
assume equality correlation among the data points from 
multiple streams. 
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