

 z

RESEARCH ARTICLE

OUTLIER DETECTION IN BIG DATA USING OPTIMIZED ORION TECHNIQUE

*Astha Tripathi and Dr. Raghav Yadav

Department of Computer Science & Information Technology Sam Higginbottom University of Agriculture,
Technology and Sciences (SHUATS), Allahabad, UP, India

Received 25th December, 2017; Accepted 18th January, 2018; Published Online 28th February, 2018

ABSTRACT

Big data is data set that cannot reasonably be handled by our traditional database or tools due to the large volume, velocity and
variety. In this vast and complex data set outlier detection is very crucial aspect. A failure to detect outliers or their ineffective
handling can have serious ramifications on the strength of the inferences drained from the exercise. This dissertation proposes a
reliable and high throughput outlier detection technique which attempts to detect projected outlier in high dimensional data
stream. Optimize ORION algorithm employs an innovative window based time model in capturing dynamic statistics from
stream data, and novel data structure containing a set of top sparse subspaces to detect projected outlier effectively in low process
time and less memory storage. This algorithm able to identifies a data point as an outlier if it resides in low density region.
Optimized Orion Increase throughput 20% and enhance stability 25%.

Key words: Data mining, Outlier detection, Orion, synthetic dataset, clustering, numerical data

Copyright © 2018, Astha Tripathi and Dr. Raghav Yadav. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Astha Tripathi and Dr. Raghav Yadav, 2018. “Outlier detection in big data using optimized Orion technique” International Journal
of Current Research in Life Sciences, 7, (02), 1204-1207.

INTRODUCTION

Big data is often characterized by 3Vs the extreme volume of
data, the wide variety of data types and the velocity at which
the data must be processed. Although big data doesn't equate to
any specific volume of data, the term is often used to
describe terabytes, petabytes and even exabytes of data
captured over time. And Outlier points indicate faulty data or
certain set of data that might not be valid (Varun Chandola and
Banerjee and Kumar). Detecting outliers gets even more
difficult when the data is highly variable, the surface your data
sits on is not flat, or your data exists in a three-dimensional
setting. The bigger your dataset, the greater your chance of
stumbling into an outlier. It’s practically a certainty you’ll find
isolated, unexpected, and possibly bizarre data you never
expected to see in your data. But how you respond to these
outliers could mean the difference between big data success
and failure. Outliers can be critically important to big data
project. Depending on the context, it may be actively hunting
for outliers, or may be trying to subdue them. In big data
project, first need to detect the outliers. Taking the time to
explore which approach works best for detection will give the
best chance of finding success with big data project (Desai,
2011). Outliers existing in high-dimensional data streams are
embedded in some lower-dimensional subspaces.

*Corresponding author: Astha Tripathi
Department of Computer Science & Information Technology Sam
Higginbottom University of Agriculture, Technology and Sciences
(SHUATS), Allahabad, UP, India

Here, a subspace refers to as the data space consisting of a
subset of attributes. These outliers are termed projected
outliers in the high-dimensional space. The existence of
projected outliers is due to the fact that, as the dimensionality
of data goes up, data tend to become equally distant from each
other. As a result, the difference of data points’ outlier-ness
will become increasingly weak and thus undistinguishable
(Vijayarni and Nithya, 2011). Only in moderate or low
dimensional subspaces can significant outlier-ness of data be
observed. Outlier detection for single streams compares a data
point in a stream with respect to the history data points from
that same stream in order to identify whether the data point is
an outlier. In case of multiple data streams, such identification
can be done either by (1) comparing the data point with the
history data points from the same stream that carries the data
point, (2) comparing the data point with the data points from
the other correlated streams, or (3) using a combination of both
(1) and (2). The opportunity of having multiple data streams to
compare allows richer semantics across the data streams to be
taken into consideration which would lead to better detection
accuracy. The outliers may be of particular interest, such as in
the case of fraud detection, where outliers may indicate
fraudulent activity. Thus, outlier detection and analysis is an
interesting data mining task, referred to as outlier mining or
outlier analysis (Jae-Gil). A data stream is an infinite sequence
of data points {Dt | t ≥ 0} with explicit or implicit timestamps.
Many data stream applications involve monitoring, so that a
particular data point is interesting only for a specific amount of
time. Therefore, every data point has to be processed in time.

ISSN: 2319-9490

International Journal of Current Research in Life Sciences
Vol. 07, No. 02, pp.1204-1207, February, 2018

 Available online at http://www.ijcrls.com

Data streams are often characterized by uncertainty because of
unreliable communication and error (Hendrik Fichtenberger,
2013). For multi-dimensional data streams, the number of
dimensions makes outlier detection even more complicated.
The most important problem in detecting multi-dimensional
outliers is similarity measurement. Calculating the distances
between data points is a popular approach to similarity
measurement. This paper proposes an outlier detection
algorithm for data streams, called Optimized Orion that
addresses all their issues related to outlier detection in case of
big data including transiency, temporal relation among data
points, waiting time of data stream, throughput and overall
storage cost (Pedro Pereir a Rodrigues et al., 2008).

Background

There are various techniques to detect outliers in big data.
Orion technique is one of them. Orion detect a data point is an
outliers if the data point has drastically different volume
compared to other data point. Orion processes each data point
from one stream.

Orion goes through three phases.

 Finding an appropriate projected dimension i.e. p-

dimension.
 Computing the outlier metrics for data point DT.
 Based on these metrics, determining if DT is an outliers or

not.

To find p-dimension, Orion uses an Evolutionary Algorithm
(EA). Each data point has a value along p-dimension. If this
value has less number of neighbors than the values of other
data point thus it is very likely outliers. After that Orion adds
new p-dimensions and removing the old ones and these new p-
dimensions again compare the data point to other data points of
the data stream. So when any data point DT arrives, Orion
picks the p-dimension that has smallest neighbor density to
reveal the outlierness of DT. Orion uses two outlier metrics for
DT.

 Neighbor density
 K-distance

If data points have much fewer neighbor means it has smallest
ND and largest K-distance compare to other data points then it
must be an outlier. When a data point arrives, Orion updates
the DDFs of all p-dimensions. Each p-dimension has a DDF
based on the data points arrived after its creation. The DDF of
a p dimension follows the DDF proposed in [7], which
addresses transiency, temporal relation, uncertainty and
concept drift for single-dimensional data streams, but is
modified for a dynamic implementation that does not require
the range of values to be known in advance. It is based on a
kernel density estimator that estimates the DDF based on the
projection of the data values on a p-dimension. For any p-
dimension, we use the DDF. Crossover finds two parent p-
dimensions with high fitness and creates a new individual that
performs better than its parents. These two individuals are
selected according to the rank selection scheme [8], in which
the probability of selecting an individual is proportional to its
fitness. According to Lemma 3, the linear combination of two
p-dimensions produces a new p-dimension that has a smaller
SD than at least one parent.

Fig. 1. Outlier detection with p-dimensions

Proposed work

After having a review on the traditional work that was done in
the field of outlier detection in big data it looks simple but is
highly challenging due to following reasons:

 This process hold data stream for long time period to detect

p-dimension for every data point.
 In case of big data velocity of data stream is very high so

the problem of network jamming can also occur.
 Waiting time of data stream also a big challenge.
 In case of Orion, storage cost of data stream in detection

process is also very high.

First motivation of Optimized Orion is to perform operations
on replica of data stream i.e. generally treated as waste in
database. The second motivation of Optimized Orion is to
avoid the effect of outliers by using roll back concept.

Overview: To determine if a incoming data point DT is an
outlier Optimized Orion goes through these phases: (1)
Analyzing the data stream (2) Create replica of data stream
RDS. (3) Make Free the original data for further processing (4)
find out p-dimensions for replica RDT. (5) Using metrics to
determine outlierness of data point DT. (6) If DT is an outlier
then roll back that data point.

Algorithm of Optimized Orion

1. Initialize data stream DS.
2. Create replica (RDS) of data stream DS.
3. Make free original data stream DS for further

processing.
4. Determine appropriate p-dimension for RDS.
5. Calculate neighbor density for each data point of the

RDS.
6. Prepare the density list.
7. Calculate k-distance for data point.
8. k- integral k- integral (DT, k).’
9. If detect outlier (n den, k-dis, h-center, v-center)
10. Then is outlier T else is outlier F
11. End if
12. If outlier T then roll back DT else not.
13. End if
14. END.

1205 International Journal of Current Research in Life Sciences, Vol. 07, No. 02, pp.1204-1207, February, 2018

Create replica of whole data stream and apply all the metrics
on this replica and make free the original data stream for
further processing and when data point will found guilty
(Outlier) then roll back that data point. With the help of this
algorithm delay will not occur and process is also safe because
of roll back concept and do not have need to store the replica
of data stream. We improve the overall throughput with less
storage cost and low network traffic.

Performance analysis

Based on the result, it would essential to discuss about the
performance of the proposed algorithm and other aspects
related with the work. Here ten data stream is to be taken for
both Optimized Orion and Orion protocols, which is
implemented; number of sample data points 4000, maximum
degree of freedom is 8000, and stability of network life time is
also changed during the whole process. The parameter values
for different configurations are given in Table 1.

Table 1.

Parameters Values Remarks for Optimized Orion

Implemented data stream 10 For both protocol
Number of data points 4000 For both protocol
Degree of freedom 8000 For both protocol
Stability 25% Enhanced
Throughput 20% Increase
Waiting Time 42% Reduce

Waiting Time: Figure 2 shows the waiting time of the data
streams using Optimized Orion technique. Waiting time For
DS4 is 12 ms as shown in figure. The waiting times of data
stream ensure that how much time consumes by pervious data
stream for process. From the figure it can be clearly shown that
the delay in the processing of data stream is quite low.

Fig. 2. Waiting Time Graph

Execution Time: Run time or execution time is the time
during which program is running, in respect to other program
lifecycle phases such as compile time, link time, and load time.
Figure 3 shows the execution time graph. The time spends by
the job actively using processor resources is its execution time.

Throughput: Throughput is an important indicator of
performance and quality of network connection. A high ratio
of unsuccessful data packets will ultimately lead to lower
throughput and degraded the performance. Figure 4 shows the
throughput graph of Optimized Orion. With the help of
Optimized Orion more data stream can be processed in
comparison to Orion. And it also reduces the chance of the
fault because Optimized Orion uses the roll back concept.

Fig. 3. Execution time graph

Fig. 4. Overall throughputs

Overall Storage Cost

Proposed Optimized Orion also reduce the overall cost of
storage because we do not store the replica of data stream for
future use and also release the original data stream. So the
overall cost of storage is also reduces as shown in figure 5

Fig. 5. Cost of Storage

Conclusion

Outlier detection for multi-dimensional data stream is
relatively new area of research. Outlier detection for multi-
dimensional data stream posses’ critical challenges. Outlier
detection requires similarity among data points but here we
deal with big data base which deals with high verity of data
points. In this dissertation we have proposed an effective and
efficient outlier detection technique with high throughput and
less waiting time, Optimized Orion. Optimized Orion is

0

5

10

15

20

DS 1 DS 2 DS 3 DS4

W
ai

ti
ng

 T
im

e
(m

s)

Data Stream

Optimize Orion

Orion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5

E
x

ec
u

ti
on

 ti
m

e
(m

s)

Number of Rounds

Optimized
Orion

Orion

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

T
h

ro
u

gh
p

u
t(

*
1

0
0

0
0

 m
b

p
s)

Time stamp(ps)

Optimize
Orion

Orion

0

10

20

30

40

50

60

70

2 4 6 8

M
em

or
y

U
se

d
(*

1
0

00
 G

B
)

Degree of freedom (*10^3)

Optimize
Orion

Orion

1206 International Journal of Current Research in Life Sciences, Vol. 07, No. 02, pp.1204-1207, February, 2018

designed for multiple data streams that may or may not be
correlated. Unlike other approaches, Optimized Orion does not
assume equality correlation among the data points from
multiple streams.

REFERENCES

Chuang-Cheng Chiu and Chieh-Yuan, T sai, 2007. A k-

Anonymity Clustering Method for Effective Data
De Andrade Silva, J, Extending k-Means-Based Algorithms

for Evolving Data Streams with Variable Number of
Clusters .IEEE, Published in: Machine Learning and
Applications and Workshops (ICMLA), 2011 10th
International Conference on Volume: 2

Desai, H. 2011. “Comparative Study of K‐means Type
Algorithms”, UNIASCIT, Vol. 2.

Hendrik Fichtenberger, Marc Gillé, Melanie Schmid, in
Algorithms–ESA2013, Volume 8125, 2013, pp 481-492

Jae-Gil, “Trajectory Outlier Detection: A Partition-and-Detect
Framework”, Department Of Computer Science, University
of Illinois at Urbana-Champaign Urbana, IL 61801, USA.

Jian Wang, Yongcheng Luo, Yan Zhao Jiajin Le, 2009. “A
Survey on Privacy Preserving Data Mining”, First
International Workshop on Database Technology and
Applications.

MdZahidul Islam, Ljiljana Brankovic, 2011. “Privacy
preserving data mining: A noise addition framework using
a novel clustering technique”, Elsevier.

Mira A. and S. Saharia, 2012. “A Robust Outlier Detection
Using Hybrid Approach”, Aamerican Journal of Intelligent
System 2012.

Mohd - Al- Zoubi, 2010. “New Outlier Detection Method
Based On Fuzzy Clustering”, (IJAR) Vol.4.

Pachgade, S. D. and S.S. Dhande, 2012. “Outlier detection
Over Data Set Using Cluster Based and Distance ‐ Based
Approach”, (IJARCSSE), Volume 2, Issue6.

Parneeta Dhaliwal, MPS Bhatia and Priti Bansal, 2010. “A
Cluster-based Approach for Outlier Detection in Dynamic
Data Streams (KORM: k-median OutlieR Miner)”, Journal
of Computing, Vol. 2, No. 2, ISSN 2151-9617, pp. 74-80.

Pedro Pereir a Rodrigues, João Gama, João Pedro Pedroso,
2008. “Hierarchical clustering of Time series Data
Streams”, IEEE Transactions on Knowledge and data
engineering, Vol 20,no.5,pp. 615-627.

Varun Chandola and Banerjee and Kumar, “Outlier Detection:
A Survey”.

Vijayarni S.and S. Nithya, 2011. “An Efficient Clustering
Algorithm for Outlier Detection”, (IJCS) Vol.32.

Ville Hautamaki, Svetlana Cherednichenko, Ismo Karkkainen,
Tomi Kinnunen, and Pa si Fr anti, ”Improving k-Means by
Outlier Removal”, SCIA, LNCS 3540, 2005, pp. 978–987

1207 International Journal of Current Research in Life Sciences, Vol. 07, No. 02, pp.1204-1207, February, 2018
