
 
  

 
  z 

  

 
 

  
 

 
  

 
 

RESEARCH ARTICLE 
 

A FULL DECLARATIVE APPROACH OF DYNAMIC LOGIC OBJECTS 
 

*1Macaire Ngomo and 2Habib Abdulrab 
 

1CM IT CONSEIL – 32 rue Milford Haven 10100 Romilly sur Seine (France) 
2Institut National des Sciences Appliquées de Rouen  – Laboratoire LITIS, Campus INSA de Rouen - Avenue de 

l’Université, 76801 Saint-Étienne-du-Rouvray Cedex (France)  
 

Received 26th March, 2018; Accepted 20th April, 2018; Published 18th May, 2018 
 

ABSTRACT 
 

The marriage of logic and objects is a very wide-ranging problem, approached with various approaches, depending on the 
purpose. In this article, we are interested in the modelling of the state and the change of the state of an object in logic 
programming. After a state of the art on the subject, presenting the various aspects as well as different solutions proposed in the 
literature, the article then proposes a mechanism of versions of objects based on the mechanism of unification and on the use 
incomplete structures. Indeed, the overview of an incomplete structure can be used to allow the entry of new information by 
means of unification and thus to foresee the future. This mechanism makes it possible to construct the history of an object by 
unification and to undo it by backtracking. The changes of state are thus made and defeated, without effects of edge, in 
synchronization with the backtrack. 
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INTRODUCTION 
 

The idea of combining the aspects of object-based 
programming with those of logic programming dates back to 
the early 1980s and motivated many researchers. The goal is to 
take advantage of the two paradigms and reduce their 
respective disadvantages. Object-oriented programming has 
proven to be appropriate for the construction of complex 
software systems. On the other hand, logic programming is 
distinguished by its declarative charm or flavour, built-in 
inference and well-defined semantic capabilities. The marriage 
of these two paradigms can be justified in these terms and 
should make it possible to increase the possibilities of use, to 
widen the fields of application of the languages that result from 
it, and to lead to more efficient, more intelligent systems. 
These include developing complex representation and 
knowledge processing languages. Logic programming provides 
an opportunity to formulate and solve problems declaratively. 
In logic programming languages, problem solving will be done 
by describing what needs to be done instead of describing how 
it should be done as long as this is the case when using 
procedural programming languages. The declarative way of 
programming offers a good method for building the software, 
for example for knowledge of systems, database applications,  
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etc., because software developers must then be much less 
concerned with the procedural aspects of the software. their 
programs because they use a conventional programming 
language. In addition, object-oriented programming as a 
special programming paradigm provides benefits for software 
engineering. In object-oriented programming languages, the 
relevant world to model is considered a collection of stand-
alone objects that encapsulate data and procedures. Objects are 
hierarchically structured and can inherit methods, namely data 
and procedures. This improves the reusability and 
maintainability of the software. Although several attempts 
have been made to combine both logic and object-oriented 
programming, the characteristics of the two paradigms have 
often not been met, including the declarative semantics of logic 
programming. In this paper, our interest is focused on the 
modelling of the state and the change of the state of an object 
in logic programming, with emphasis on the preservation of 
the declarative semantics of programming in logic. This is a 
difficult subject in that it raises the problem of the formal 
semantics of updates. The article is organized as follows. In the 
first part we describe the different aspects of the problem and 
present the existing solutions. In the second part, we present a 
new mechanism of object versions, based on the unification 
mechanism and on incomplete structures. This mechanism 
implemented in the OO-Prolog language is then compared to 
other approaches. OO-Prolog is a programming language that 
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consistently integrates programming paradigms into logic and 
object-based programming. It is fully developed in Prolog. In 
this language, an object is a named collection of Prolog 
predicate definitions. In this sense, an object is similar to a 
Prolog module. The object system is defined as an extension of 
the Prolog module system. In addition, an object can have 
attributes with values that define its history and a future that 
gives it a perspective of evolution in tree time. The predicate 
definitions belonging to an object are called methods. Thus, an 
object is conceptually a named collection of methods and 
attributes. Each object has a unique identifier. Some of the 
methods defined for an object should not be stored in the 
object explicitly, but rather are shared with other objects by the 
inheritance mechanism. The object system allows objects to be 
defined in a file, or created dynamically during program 
execution. In any case, during the resolution, the programs are 
loaded into the resolution environment.  
 
Objects defined in a file are integrated into the Prolog 
environment. That is, objects have a specific syntax like Prolog 
terms, and can be loaded into the Prolog environment. The 
defined objects can be either static or dynamic. In addition, the 
methods can be either dynamic or static. These properties are 
inherited by the sub-objects. Objects created during execution 
are dynamic. The inheritance mechanism is implemented using 
the import mechanism of the module system. Inheritance is a 
default inheritance by the overriding mechanism, which means 
that if a method is defined locally, and the same method is 
defined in a super object, then the clauses of the super method 
are not part of the definition of the locale, unless explicitly 
designating the class that defines the desired behaviour. As 
usual in Prolog, the methods can be undefined in a definite 
way, and alternative answers can be retrieved through 
backtracking. Using the delegation mechanism, other methods 
of knowledge sharing can be implemented by the user. In 
objects, there is a first proto-object prototype called "object", 
from which other objects can be constructed, directly or 
indirectly. 
 
State of the art 
 
The different aspects of the problem 
 

The behaviour of a logic variable 
 

In traditional object languages (Java, C++ [Stroustrup 92], 
CLOS [Bobrow 88a, 88b, Steele 90], Smalltalk-80 [Goldberg 
83], Eiffel [Meyer 87a, 88, 90], etc.), state of an object is 
represented by the values assigned to its imperative instance 
variables and can be modified by assigning new values to these 
variables. Each variable represents a memory location whose 
contents may change by assigning a new value. However, a 
logic variable represents a unique but unknown entity and not a 
memory location whose contents can be changed by assigning 
a new value. It cannot therefore substitute for a mandatory 
variable. Once a logic variable has been instantiated, the only 
way to undo its value is to go back (backtrack). 
 

The intrinsic limitations of first-order logic  
 

Another basic difficulty of this integration is that the first-order 
logic programming on which a large number of logic 
programming languages such as Prolog - the best-known and 
most widely used - seems to be fundamentally incompatible 
with the change of state. Indeed, the change of state introduces 
a temporal element; hence the need to look for alternative 

semantics. Ideally, we would like formal semantics, using, if 
possible, well-defined logics. Note that logic programming is 
not linked to a logic system like first-order logic or a language 
like Prolog. It groups together all the languages based on a 
well-defined logic system. 
 

The search for a balance between theoretical and practical 
aspects 
 

In object-based programming, we must propose a way to 
model the state of objects and introduce state changes by 
finding a balance between the respect of the declarative 
semantics and the effectiveness of the implementation 
mechanisms so that applications are not too penalized in terms 
of performance at runtime. In practice, it is always necessary to 
look for the best compromise between these two criteria. This 
goal must be achieved by providing meaningful and 
understandable operational semantics, based on effective 
inference mechanisms [Malenfant 90b] and a logic system that 
facilitates implementation. 
 
Identification of objects 
 
For [Bouché 94] who uses "Booch thought" [Booch 92], "an 
object is defined as anything that has an identity, a state and a 
behaviour". "The identity of an object is the property of an 
object that distinguishes it from all others" [Khoshafian 86]. 
An object behaves like a living being, whose state evolves with 
time, but which one can always identify, in its different forms 
(states). In addition to the flexibility of manipulation it offers, 
the identity of the objects also serves to their "modifiability". 
These two notions are closely related. The absence of this 
important property in languages like CIEL [Gandriau 88] or 
LOGIN [Gallaire 86] has important consequences on the 
semantics of state change. In particular, two equal objects (in 
the sense of equality of structures) will necessarily be identical 
since the only possible structural comparison makes them 
identical. 
 
The influence of the order of operations on the state of 
objects  
 
The behaviour of an object is influenced by its history; the 
order in which operations are applied to an object is full of 
consequences. The reason for this behaviour depends on the 
time and existence of a state in the object. The classic image of 
time, used in object systems (imperative approach of 
programming), is the one used in Newtonian physics. Time is a 
"one-dimensional linear continuum". In certain theories or 
modes of reasoning, we are led to use a non-linear time model, 
where a moment may, for example, have several futures 
unrelated to each other. This is true for the temporal logic that 
uses a tree time. 
 

Semantic problems of "assert" and "retract" update 
predicates  
 

Several Prolog systems offer "assert" and "retract" update 
predicates to dynamically modify programs and have long 
sought to define reasonable semantics for them [Moss 86; 
Lindholm 87]. These predicates have been known since their 
appearance as one of the gray areas of the Prolog language and 
their semantics are procedural. Even worse, it is not defined in 
a standard way. Out of twelve Prolog sites he studied in 1986, 
Moss distinguished nine different behaviours from the "assert" 
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and "retract" predicates [Moss 86] and identified three major 
issues. First, since the "assert" and "retract" predicates result in 
dynamic program changes, the queries that contain them 
become sensitive to the order in which the goals are executed. 
Second, the influence of the predicates on the goals already 
called in the presence of the backspace; the problem of the 
visibility of the effects of the "assert" and "retract" predicates 
then arises for the goals already called. This leads to problems 
of consistency and program termination. Finally, the use of the 
"assert" and "retract" predicates raises the problem of changing 
the quantization of variables that occurs when dynamically 
adding a partially instantiated rule that can be instantiated later. 
Indeed, the logic variables in a query are quantized 
existentially while the variables in a rule are quantized 
universally [Warren 84; Bowen 85b]. Thus, when an "assert" 
adds a rule containing variables to the base, the status of these 
variables changes from an existential quantization in the query 
to universal quantization in the database. When we use the 
rules (facts) to represent the objects, we are then faced with 
this problem. Three solutions are proposed in the literature to 
treat this problem [Chen 88a]: 
 

 Allow only the addition of fully instantiated facts 
[Warren 84]. This solution is too restrictive and 
therefore does not allow the modelling of situations 
where the programmer has only partial knowledge of 
the domain (the unknown being represented by free 
variables). 

 Explicit quantification of variables [Warren 84; 
Machanda 88]. This solution is interesting but a bit of a 
constraint for the programmer who does not see his 
programming efforts diminish. 

 The management of existential variables. This solution 
is interesting since it allows a natural link between the 
variables in a query and those in the database. However, 
it is difficult because it poses the problem of the 
management of existential variables in the database. 

 

Improvements in the behaviour of the "assert" and "retract" 
update predicates 
 

Three major movements have shown the need to define a 
coherent semantics of "assert" and "retract". First, the 
portability requirements of large applications written in Prolog 
have emphasized the fact that consistency between Prolog 
implementations is necessary, even for predicates recognized 
as not having declarative logic semantics [Lindholm 87]. Then, 
to consistently handle updates and avoid edge effects, some 
Prolog systems have predicates for temporary addition of rules 
to the database. Finally, deductive databases, in connection 
with logic programming and Prolog as programming and query 
language, require well defined semantics of updates to improve 
program comprehension and reliability [Warren 84; Naish 87; 
Machanda 88]. 
 

Solutions for Modelling the State and State Change of an 
Object in Object-Based Logic Programming 
 

Several approaches have been proposed to model the state of 
an object in object-based programming. In this section, we will 
describe the main existing proposals. The question of 
modelling the change of state of an object is often closely 
linked to the choice of an approach for the representation of its 
state. Thus, we will present the various modes of 
representation of the state of an object to discuss more 
precisely how is to model the change of state in each case. 

Modelling based on imperative variables 
 
This approach consists of directly transplanting, in a logic 
programming language, regardless of the declarative 
semantics, imperative variables as they exist in traditional 
object programming. The state of an object is then represented 
by a set of instance variables to which values are assigned 
using an assignment statement. State changes are done in a 
destructive way, with no possibility of backtracking. This 
approach is essentially pragmatic and incompatible with the 
declarative style of logic programming. It is especially 
appreciated for its efficiency of calculation that by a need of 
proof of computation. Several languages are constructed 
according to this schema: ESP [Chikayama 83, 84], LOOKS 
[Misoguchi 84], SPOOL [Fukunaga 86], Orient84 / K 
[Ishikawa 86a, 86b, 87], PROBE [Gandilhon 87], Prolog 
Objects, etc. To clarify our point, here are two languages 
representative of this approach. Objects Prolog is an extension 
of Prolog SICStus [SICStus Prolog, 2017]. Objects Prolog is 
based on the concept of prototype. In object-oriented 
programming, a prototype is an object that represents a typical 
behaviour of a certain concept. A prototype can be used as is 
or as a template to build other objects that share some of the 
characteristics of the prototype object. These objects can 
themselves become specialized prototypes and used to build 
other objects and so on. The basic mechanism for sharing is 
inheritance delegation. Using the delegation mechanism of an 
object can convey a message to another object to invoke a 
method defined by the recipient, but interpreted in the context 
of the sender.  
 
In Prolog Objects, an object is a named collection of predicate 
definitions. In this sense, an object is similar to a Prolog 
module. The object system can be seen as an extension of the 
SICStus Prolog module system. In addition, an object may 
have attributes that are editable. Predicates belonging to an 
object are called methods. Thus, an object is conceptually a 
named collection of methods and attributes. Some of the 
methods defined for an object should not be stored in the 
object explicitly, but rather are shared with other objects by the 
inheritance mechanism. The inheritance mechanism is 
implemented using the import mechanism of the module 
system. As usual in Prolog, the methods can be undefined in a 
definite way, and alternative answers can be obtained through 
backtracking. Prolog++ is an APL Associates product for 
object-oriented programming extensions of APL Prolog [APL 
2017]. Prolog++ is a complete object-oriented system 
integrated into a Prolog framework. Objects and instances 
provide a convenient way to structure related knowledge and 
data elements. A hierarchy of objects (or classes) makes it 
possible to define the information at the highest relevant level 
and to inherit it via the taxonomy. This distributes data and 
functionality along a line from general to specific. By 
segmenting information with this approach, complex data 
relationships can be efficiently managed. The ability to define 
object taxonomies with Prolog ++ and manipulate them with 
Prolog rules provides a powerful combination for serious 
programmers. Most Prolog ++ programs can be easily 
converted into Prolog Object programs. 
 
Modelling based on logic terms 
 

Another commonly used approach is to make an object a logic 
term also called "object-term". In logic programming, a closed 
functional term represents an element of the domain. It can 
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represent structured data, analogous to a structure of a 
structured programming language such as C, Java, PHP, etc. 
The functional symbol is then interpreted as the name of the 
type or class. The arguments of the term represent the state of 
the object. In the system of Zaniolo [Zaniolo 84] and Stabler 
[Stabler 86], for example, the term point (Abs, Ord) represents 
a set of objects and has as possible instance the term point 
(2,3). CIEL [Gandriau 88] is another language that is based on 
this approach. In this language the class Point can be defined 
as follows: 
 
(class Point {abs: Integer, ord: Integer } (methods 
Print (Point {abs: x, ord: y} ) -> write(x),write(' - 
'),write(y);...)) 
 
An instance of this class can be defined by instantiating the 
arguments of this object-term: Point{abs: 2, ord: 3}. 
 
In general, the functor of a term-object (Point, in the example 
above) represents the name of a class. The definition of an 
instance is done by instantiating the arguments of the object-
term with constant values. Based on this reasoning, several 
languages associate logic terms and objects and make an object 
a logic term, also called "object-term". 
 
In LOGIN [Aït-Kaci, 86], LIFE [Aït-Kaci, 88, 89a, 89b, 91, 
93] and U-Log [Gloess, 84, 85, 89a, 89b, 90, 91, 95] which use 
this mode of representation, an object is represented by a "Psi-
term". For example, the Psi-term below represents the structure 
of the instances of the person class. 
 
person(name => N:string, age => Age:integer, father => 
person(name => N)) 
 
As in the first languages, a particular instance is defined by 
instantiating the arguments of the Psi-term by constancy 
values: person (name => dupond, age => 12, father => person 
(name => dupond)) 
 
In this approach, state changes are made by creating a new 
term with new parameters. As the example below shows, CIEL 
uses this approach and requires the object on which a method 
operates to explicitly appear as an input and output argument 
to the method: push(stack(S),X,stack([X|S])). 
 
In fact, CIEL is a logic programming language in which the 
notion of assignment does not exist.  
 
The main consequence is that the value of a class instance can 
not change. To simulate the state change of an instance when 
applying a method, another object is created by unification. 
Here, the management of the consumption and the production 
of the terms-objects becomes the responsibility of the 
programmer who must take great care to pass from one method 
call to the other the good state of the object. This approach 
preserves the declarative semantics of programs and does not 
go beyond the framework of first-order logic. The logic object-
term approach is interesting from a logic point of view insofar 
as it preserves the declarative semantics of logic programming. 
However, from the point of view of object-oriented 
programming, it poses several problems and is therefore often 
criticized: 
 

 The difference between class and instance is not as clear 
as in conventional object languages. 

 The identifier of an object is seen as a pointer to the 
structure of the object. Languages using the logic-based 
approach are often devoid of this important feature of 
objects and do not distinguish two equal but not 
identical objects. 

 Failure to respect the principle of encapsulation. 
 Syntactic verbosity: the objects being identified by their 

data, the user directly manipulates the whole structure 
of the object, with all its parameters. The number of 
arguments of an object-term being sometimes high; this 
leads to languages whose writing is characterized by 
syntactic verbosity. 

 
This approach is therefore interesting, but we must look for a 
way to solve these different points. 
 
Modelling based on atomic formulas 
 
Conery's logic objects [Conery 87a, 87b, 88a, 88b] are another 
technique for using first-order logic to model objects with an 
editable internal state. The goal is always to introduce the 
advantages of object programming in logic programming so as 
to have a minimum impact on the existing logic programming 
structure (that of Prolog in particular). It is a system in which 
the operational semantics are defined by proof of resolution in 
the logic of the first order. In Conery's schema, a logic object is 
represented by an atomic or literal formula. In a program, the 
set of predicate symbols is divided into two subsets: one for 
object names and another for procedure names. Literals with 
object names as predicate symbols are called "object literals", 
and literals formed from procedure names are called 
"procedure literals". The program below contains a definition 
of the class "Pile" which allows illustrating these two notions. 
In this one, stack (ID, L) is an object literal and empty stack 
(ID), stack (X, ID), depilate (X, ID) and vertex (X, ID) are 
procedural literals. 
 
Description of valid batteries 
 
A valid stack is here an empty stack or a stack whose all 
elements are integers. 
 
stack(ID, [] ). 
stack (ID, [X|L]) <-  integer(X) /\ stack (ID,L). 
 
How to create a stack 
 
The creation of a stack consists in introducing in the resolvent 
(expression introduced in order to reach or complete a 
solution) the object literal stack (ID, []). The "new_pile" 
method below has a special role in the description of the 
"Stack" class. Its function is to introduce into the system a new 
object literal. 
 
Methods of the class 'Stack' 
 
emptystack(ID) /\ stack(ID, [] )<- stack (ID, [] ). % emptiness 
test. 
headup(X,ID) /\ stack(ID,S)<- integer(X) /\ stack(ID,[X|S]). 
unstack(X,ID) /\ stack (ID, [X|S])<- stack (ID,S). 
top(X,ID) /\ stack (ID,[X|S ])<- stack (ID,[X|S]). 
 
A query is really a pair of queries that are linked through 
shared variables. Part of the query concerns only literal 
procedures; the other consists of object literals. Complete 
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proof requires both evidence of the existence of objects and 
proof that these objects satisfy a given set of constraints. Both 
sub-proofs are linked and executed simultaneously. Object 
literals are used to define objects and their states. A positive 
object literal (at the head of an object clause) defines the 
structure (name and arguments) of a class. Negative object 
literals (in the body of an object clause) represent class 
instances, where arguments are the current values of state 
variables. On the other hand, the procedure literals at the head 
of an object clause define the name and list of parameters of 
the methods. In the body of the clause, the procedure literals 
define method calls. The table below provides the procedural 
interpretation of a number of clauses, with various 
combinations of object literals and procedures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Table 1, p and q are literal-procedures; s and t are literal-
objects. The procedural interpretation of a negative object 
literal is "to create an object with state s". A positive object 
literal is a pre-condition for the execution of goals in the body 
of an object clause. In other words, in the order in which the 
goals in the body of a clause are invoked, there must be an 
object that satisfies the head of the object clause. A rule with 
an object literal at the head and another object literal of the 
same name in the body (with new parameters) can then be 
interpreted as a state transformation rule of an object. The state 
changes of the objects are then made by this type of rules. 
Semantically, Conery pays the high price because it allows the 
user not to put the object in parameter methods. He prefers to 
automatically process the consumption and production of 
object literals. This automatic processing obliges him to create 
a total order between the objects solved with the help of object 
rules, which goes against the declarative semantics which is 
insensitive to the order of reduction of the goals. In general, a 
query, consisting of a mixture of object literals and procedure 
literals, represents a query for proof of the existence of a set of 
objects and for the accuracy of a number of conditions. Since 
object clauses have declarative semantics, we can compare an 
object proof with the more conventional one. 
 
Logic objects give assignment semantics (assignment) in terms 
of modified procedure proof. This allowed Conery to state that 
the executions of the object programs correspond to the logical 
consequences of the theories [Conery 88a]. Nevertheless, there 
is no way to give declarative semantics as good as theoretical 
proof. The lack of such declarative writing for objects weakens 
the argument that logic objects are logical. 
From the point of view of object-based programming, although 
it introduces the notion of object identifier, it suffers from a 
number of defects: 
 

 The lack of structuring of programs (important aspect in 
programming by objects); the structure of a program is 
the same as that of a PROLOG program. 

 As in the previous approach, the distinction between 
classes and instances is not clear. In addition, a class 
only exists by its methods. Indeed, the definition of a 
class is done by declaring the rules that define the 
behavior of its instances. 

 If syntax verbosity is suppressed in the message sending 
protocol, it remains in the signature of a method in 
which the entire structure of the object must appear as a 
literal. 

 It is difficult to define inheritance with object clauses. 
Indeed, a call to a literal procedure results in the call of 
the associated object literal (explicitly bearing the name 
of a class). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, this system represents an interesting approach to 
representing objects with state. By modifying the proof of 
procedure, to allow the modelling of the assignment, we obtain 
a system that makes it possible to simulate the change of state 
rather than a purely descriptive formulation. 
 
Modelling based on perpetual processes 

 
This approach consists of modelling an object with a perpetual 
process defined by a recursive predicate. As in the previous 
approach, the predicate functor represents the name of the 
object. Some arguments of this predicate are intended for the 
representation of the state of the object. A perpetual process 
characterizes what intuitively causes changes over time. The 
change of state is then modelled by substituting for a goal-
process that unifies with one of the rules of the predicate-
object the goal-process network specified by the body of the 
rule in question. Several languages are based on this approach. 
These languages are often based on competing logic 
programming languages such as Concurrent Prolog [Chapiro 
83a, 83b, 86, 87, 89], KL1 (Knowledge Language 1). 
Shapiro and Takeuchi [Shapiro 83b, 87] model an object with 
Concurrent Prolog processes as in the example below that we 
have already presented and which we voluntarily resume here 
to illustrate this approach: 
 
 counter([initialize | Messages],Etat) :- 

counter(Messages?, 0). 
 counter([up | Messages], State) :-  
 New_State is State + 1, counter(Messages?, New_State?). 
 counter ([down | Messages], State) :-  
 New_State is Etat - 1, counter(Messages?, New_State?). 
 counter([show(State) | Messages], State) :-  
 counter(Messages?, State). 
 counter([ ], State).% stopping the process. 

 

Table 1. Procedural and declarative interpretation of the object clauses 
 

Clause Declarative reading Procedural reading 

p. p is true. the procedure p is solvent. 
s. s is an object. s is a valid object. 
<- p.  call of the procedure p; proof of p. 
<- s.  create an object with state s. 
p <- q. p is true if q is true. to solve p, solve q. 
s <- t. s is an object if t is an object. given an object with state s, create an object with state t; transform s into t. 
p <- q / \ s. p is true if q is true and 

s is an object. 
to solve p, solve q and create a 
object with state s. 

s <- q / \ t. s is an object if q is true and 
t is an object. 

s can be transformed into t if q is 
solvent. 
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Here, the counter object is a goal whose behaviour is defined 
by a predicate and the first argument of the predicate-object is 
a list of messages. The rules define the behaviour of a goal-
object according to the received messages. All of this happens 
in a competing language. One of the main problems is sharing 
an object between portions of the program that want to use it. 
The linearization of the operations is done by order of the 
messages rather than by that of the versions. In Shapiro and 
Takeuchi's approach, everything happens in a competing and 
deterministic logic programming language (Concurrent Prolog) 
that no longer assumes the important properties of logic 
programming as completeness. The introduction of 
determinism is often justified by a gain in efficiency of 
execution. Vulcan [Kahn 86a, 87], Mandala [Furukawa 84; 
Ohki 87, 88] and Polka [Davison 88, 89b, 91] are three 
languages in the same lineage. Since Concurrent Prolog 
communication management is problematic, Vulcan suggests 
using a pre-processor to automatically handle and polish the 
language syntax at the same time. Mandala is a language based 
on the KL1 language developed as part of the fifth generation 
project in Japan. Polka offers a syntax built over Parlog [Clark 
86, 87], a programming language in parallel logic similar to 
Concurrent Prolog and which facilitates the writing of 
programming by objects. 
 
LO [Andreoli 89, 90a, 90b, 90c, 91, 92] is another framework 
for amalgamating the paradigms of logic programming and 
object-based programming and which also represents an object 
by a predicate-process and the state of an object by the 
arguments of a process. Thus, as in the schema of Shapiro and 
Takeuchy, the dynamic behaviour of objects is then expressed, 
linearly, in terms of the search tree. The theoretical foundation 
of Linear Objects is Girard's linear logic [Girard 87, 89], a 
logic introduced to provide a theoretical basis for the study of 
competition. A major advantage of LO is to have a well 
defined logic as theoretical support. It thus preserves the 
declarative writing of logic programming. As an example, 
consider the class of points in the plane, with both slots x 
(abscissa) and y (ordinate). One possible instance of this class 
is (3,5). In the program below, the trans (Dx, Dy) and projx 
methods modify the state of a point by creating a new process 
with new parameters that define the new state of the object. 
 
point @ [trans(Dx,Dy) | S] @ x(X) @ y(Y)   
`New_X is X + Dx, New_Y is Y + Dy 
<- point @ S @ x(New_X) @ y(New_Y). 
 
point @ [projx | S] @ x(X) @ y(Y)   
<- point @ S @ x(X) @ y(0). 
 
In the first, the state of the object goes from (X, Y) to (X + Dx, 
Y + Dy). In the communication stream S, the first message, 
that is to say the one that comes immediately after trans (Dx, 
Dy), will be processed in the new state (X + Dx, Y + Dy) of the 
object. The messages are processed linearly according to their 
order of appearance in the communication flow of the object. 
The main objections to this approach are often: 

 
 Syntactic verbosity as in the first approach. 
 The difficulty of managing the communications and in 

particular to share the same object between several 
portions of the program. 

 It should also be noted that all this happens in a 
language that is parallel and programming in parallel 
logic such as that of Concurrent Prolog no longer 

provides important properties of logic programming as 
completeness1. 

 
Modeling based on logic rules 

 
This approach consists in seeing an object as a base of rules 
and in representing its state by the set of rules present in this. It 
allows us to retain the unification of data and procedures 
specific to logic programming where the rules and facts use the 
same representation. It has the advantage of addressing the 
elements handled directly by logic programming, the rules, and 
not of interpreting them according to the concepts of object 
programming. The object-rule approach also results from an 
abstraction where the concept of the theory of logic is made to 
correspond to the concept of an object. This analogy leads us 
to consider a class as the description of a theory or meta-theory 
and a metaclass as a meta-meta-theory (Malenfant 90b). 
Several languages are based on this approach: POL [Gallaire 
86], ObjVProlog [Malenfant 89a, 89b, 89c, 89d, 90a, 90b, 91, 
92], Prolog ++ [Moss 90, 94] [LPA 2017], etc. In this mode of 
representation, an object can be seen as a theory and the 
change of state as the modification of this theory [Malenfant 
90b]. This brings us back to the problem of the semantics of a 
theory whose assertions can be modified during deduction. 
Indeed, if an object is to be seen as a logical theory, what 
meaning can be given to the changes of this theory? If we 
admit the modification of a theory during deduction, we are 
confronted with the problem of the semantics of a theory 
whose assertions can be modified during deduction. On the 
other hand, the dynamic addition and removal of clauses in the 
database raises the problem of the consistency of updates and 
the change in the quantification of logical variables. Languages 
such as Prolog / KR [Nakashima 84], Object-Prolog [Doma 
86], Scoop [Vaucher 88], Prolog ++ [Moss 90, 94] [LPA 
2017], use the Prolog assert and retract or similar predicates 
(eg a record example in Delphia-Prolog) whose semantics are 
imperative. The languages that use them suffer from the same 
problems of semantic order and coherence. These predicates 
are often preferred for their computational efficiency. 
 
In the absence of a logical semantics, [Malenfant 90b] adopts 
an operational approach consisting, according to his own 
words, to preserve the maximum of the logic of the Horn rules 
and to define an operational semantics of the changes of state 
of the objects which limit the effects on the semantics 
declarative. In the "object version mechanism" it proposes for 
the implementation of the ObjVProlog-V (ObjVProlog with 
Versions) language [Malenfant 90b], the object versions 
subdivide an object into a sequence of rule bases. A resolution 
context is then a triplet (<object>, <version>, <class>), where 
<version> and <class> respectively indicate the rule base in the 
sequence that forms the object and the level in this base rules. 
Four rules then make it possible to determine in which version 
a goal must be solved [Malenfant 90b]. According to this 
approach, an object is built of a sequence of versions that 
represent the history of state changes for that object since its 
creation. Thus, when a change is executed, conceptually, a new 
copy of its rule base is made. A message to an object is 
normally fully resolved in the context of the latest version of 

                                                 
1
 In logic programming, completeness is the property of finding all solutions to 

a given query. Prolog offers completeness in many cases, but poses some 
problems [Sterling 90]. In Concurrent Prolog, not only are not all the solutions 
found, by its operative semantics it can happen that a request fails even if a 
solution exists according to the program. 
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the object in this rule base when the object begins to resolve it. 
Contrary to the approach we advocate, ObjVProlog-V's object 
versioning mechanism is a mechanism that seeks to separate as 
much as possible the backtracking, to find solutions to a 
message, the classic behavior associated with the change of 
state of the objects. As a result, the state change is seen as a 
behavior that is not related to backtracking. [Malenfant 90b] 
justifies this choice by the fact that the change of state for the 
objects usually implies a progression in time which is badly 
related to the backtracking. 
 
Modeling based on intentional variables 

 
Chen and Warren [Chen 88a] have addressed the problem of 
logical programming assignment by proposing to use 
Montague's intentional logic as a semantic basis for changing 
values of variables. Intentional variables are modelled as a 
sequence of values in each state, and during deduction, goals 
are solved in a given state as long as there is no change of 
state. The deduction procedure with intentional variables 
makes and breaks the state changes in synchronization with the 
backtracking. This approach has a clear semantics in 
intentional logic. It should serve as a well-defined semantic 
alternative to imperative variables. 
 
vide(IP) :- IP :: []. 
top(IP, X) :- IP :: [X | _]. 
stacking(IP, X) ::= IP :: Stacke, IP := [X | Stacke]. 
unstacking(IP) ::= IP :: [_ | Stacke], IP := Stacke. 
 
As the example above shows, there are two types of predicates: 
 

 Static predicates, defined by static rules introduced by 
the ": -" operator; and dynamic predicates, defined by 
dynamic rules introduced by the ":: =" operator. 

 
The interpretation is as follows. A static rule is identical to a 
Horn rule except that it may contain access to the value of an 
intentional variable, represented here by the operator "::"/2. A 
dynamic rule allows you to modify an intentional variable 
using the operator ":"/2. 
 
SWI-Prolog approach for web semantic 
 
The Web (semantics) is one of the most promising areas of 
application for SWI-Prolog. Prolog manages the natural RDF 
semantic web model, where RDF provides a stable model for 
representing knowledge with shared semantics. It turns out that 
Prolog is also quite capable of providing web services (HTTP), 
especially where it comes to dynamic generation of HTML 
pages and providing data for JavaScript in web applications by 
using serialization JSON. This is an imperative approach that 
does not respect the declarative semantics of logic 
programming. 
 
Other approaches 
 
LOO [Mancarella 195] is an object-oriented language in logic 
programming. The Loo language combines object-oriented 
programming with logic programming. Authors define model 
classes as sets of clauses that represent their methods. An 
object is an instance of a class and is identified by a unique 
name. They use a set of operators on theories of manipulation 
of state changes and for the inheritance of modelling. The 
authors remain very vague and give no details on the 

modelling and implementation of these mechanisms. A 
message sent to an object results in an objective that is 
resolved relative to a dynamic composition of clauses 
representing its class and its current state. The challenge is to 
avoid superimposing a complex syntactic and semantic 
structure over the simple structure of logical programming. 
The authors say they have tried to extend logical programming 
in a conservative way, as much as possible, in order to 
maintain simple and clear semantics. 
 
Comparison of approaches 
 
This multitude of approaches shows the wealth of logic 
programming that offers several formalisms of representation. 
With the exception of models based on imperative variables, 
all the others manipulate elements of logic programming 
(logical term, predicate, logical rules, etc.). However, their 
level of granulity differs. In the logic-based approach, one 
essentially seeks to interpret the elements of logical 
programming in terms of object-oriented programming. By 
confining itself to interpreting terms as objects, some 
advantages of logical programming can be made to object-
based programming, but relatively little is made of logical 
programming [Malenfant 90b]. Clauses and predicates 
completely change perspective on terms. In fact, it changes the 
way data structures and terms are handled, much like a typing 
system does. The clauses are at a level of granularity where 
one is not interested directly in the terms that are manipulated 
by rules, but in the sets of clauses seen as largely autonomous 
bases of knowledge, behaving like logical programs. However, 
if the programming with the clauses of Horn has a clear 
semantics, this representation mode poses the problem of 
updating the base of clauses during the resolution (change of 
quantification of the variables, coherence of the updates, etc.). 
Approaches based on logical terms, literals and perpetual 
processes do not experience the same semantic problem as 
rule-based approaches. The defects noted come rather from the 
non respect of certain characteristics of the programming by 
objects. Approaches based on logical terms, literals and 
processes generally suffer from syntactic verbosity. In these 
approaches, the objects are devoid of identifier and are 
identified by their structure. 
 
We also note that in these approaches, the distinction between 
classes and instances is not as clear as in conventional object 
languages. In some of these approaches (Logical objects of 
Conery, objects in Concurrent Prolog, LO, etc.), a class exists 
only by its methods. These approaches, however, offer 
advantages in terms of unification and have clear logical 
semantics. In particular, they provide a solution to the problem 
of changing the quantization of logical variables since, during 
the resolution, all the actions on the objects are performed in 
an existential environment. In Vulcan, SCOOP, 'Objects as 
Intensions', ObjVProlog, the atom that represents the object 
identifier is generated by the system to ensure its uniqueness. 
After having reviewed the main existing approaches in logic 
programming to model the state and the change of state, we 
note, despite the multitude of proposed solutions, the difficulty 
of establishing state changes of objects on a semantic logic and 
effective implementation mechanisms. The search for a logical 
framework for the semantics of state changes of logical objects 
and that of implementation mechanisms remains, from this 
point of view, a very open subject in that, the answer to all the 
considerations , theoretical and pragmatic, which constrain the 
definition of a programming language in logic and object-
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oriented is not easy. In the next section, we describe our 
approach to modelling state and state change in logic 
programming. Our approach takes into account both 
declarative semantics and the effectiveness of implementation 
mechanisms. 
 
The logic object version mechanism of the OO-PROLOG 
language 
 
Classically, the change of state of an object implies a 
progression in time (linear time) which is badly related to the 
backtracking. Consequently, the change of state is seen as a 
behaviour that is not linked to the backtracking. As we said 
before, the image of time is here that used in Newtonian 
physics. Time is a one-dimensional linear continuum. The 
mechanism we propose is based on the unification mechanism, 
as a matching tool, and on the backtrack. Our goal is to have 
dynamic objects that can be built by unification and undone by 
backtracking. In order to avoid edge effects, we propose to 
manage objects in a temporary existential environment. This 
facilitates the links between variables. An immediate 
consequence is that during the deduction, the quantification of 
the variables involved does not change. An object can be 
partially instantiated. In other words, its state can contain 
variables that can be instantiated later. In an edge effects 
programming style, the focus is on a global environment. In 
the OO-Prolog [Ngomo 96] language, this global environment 
is erased by considering it as an additional parameter of each 
method which calculates, in addition to the normally expected 
result, a new environment. Objects are handled through this 
environment. A state of this environment represents an aspect 
of the universe at a given point in the time of deduction. In the 
OO-Prolog language, an object is characterized by its history 
and behaviour [Lieberman 86]: the future is represented by the 
set of free variables (anything can happen), the past is 
instantiated (it's too late) . During the deduction the objects are 
built by unification and defeated by backtracking. As the 
resolution time goes back when looking for new branches 
leading to new solutions, this is translated operationally by the 
restoration of the previous states when there is backtracking. 
 
Internal representation of an object 
 
In the OO-Prolog language, objects can be statically declared 
in a program, but dynamically manipulated via an existential, 
temporary and scalable environment. An object environment is 
represented by an incomplete structure2 shared by all objects. 
This environment is a common knowledge base for objects. It 
has the following form: ENV = [next(PtrObject),..., 
clock([0|NextDate]),date(0),Id1:E1,Id2:E2,...,Idn:En]. 

 
We are talking here about a dynamic environment open to 
changes of state. Otherwise, the environment may be static or 

                                                 
2
 An incomplete structure is a Prolog term that has at least one 

[Sterling 90] variable. Incomplete structures are well suited to 
represent dynamic situations. At each operation the free variable will 
be linked according to the operation and a new free variable will be 
added. Declarative reading of programs using these structures is 
immediate. Operationally, these programs are understood in terms of 
constructing an incremental structure, where the "hole" for the 
additional results is explicitly designated [Sterling 90]. The overview 
of an incomplete structure can be used to allow the entry of new 
information and thus to predict the future. An incomplete data 
structure therefore reflects the intuition we have of the object concept. 

closed, with no possibility of state changes. This is then 
expressed as follows: 
 
ENV = [next(closed),..., clock([0]),date(0), Id1:E1,Id2: 

E2,...,Idn:En]. 

 
This type of environment is used in particular for representing 
static knowledge (static programs) and solving problems by 
simply querying the knowledge base. In this representation, 
each state of the environment has a date corresponding to its 
date of creation, date (Date) of state changes. This is then 
expressed as follows: Id1:E1, Id2:E2, ..., Idn:En are objects 

present in the environment. The PtrObject parameter is a 
pointer to the object that will be created later. Each 
environment of objects is provided with a clock that contains 
the different moments of the evolution of the environment. The 
instantiated part of this environment represents the past state of 
the base while its uninstantiated part represents its future state, 
which may contain future modifications. Each Ei is also 
represented by an incomplete structure of the form: 
 
Ei = [next(NextState), status(_), date(0), att1 := val1,..., atti := 
vali,..., attn := valn] 
 
where NextState is a pointer to the future state of the object. 
The "status" attribute is used to define the status of the object. 
When associated with an uninstantiated variable, "status (_)", 
the object is active. To give an object an inactive status it is 
enough to instantiate this variable in the following way "status 
(off)". 
 
Status changes are made and defeated in sync with Prolog's 
backtrack. It is therefore possible to return, by backtracking, 
the previous states of an object or the environment of objects. 
The universe of objects is formed by a series of layers ordered 
in time that each reflect an aspect of the universe at a given 
moment. Each layer only stores the information that 
differentiates it from the previous layer. Each object retains its 
history by memorizing the changes made from its creation to 
the present moment. By default, as in the approach of 
"intentional objects" [Chen 88a], the most recent version hides 
the old ones ("non-monotonicity"). 
 
Update Operations 
 
The universe of objects is formed of a series of layers that each 
reflect an aspect of it at a given moment. The layers are 
ordered in time (resolution time), each memorizing only the 
information that differentiates it from the previous layer. There 
is no duplication of data. A user can operate on the most recent 
layer (including the previous ones), or on an earlier layer, by 
explicit designation. The universe of objects is represented by 
an incomplete structure that contains its different layers. Each 
object retains its history by memorizing the changes it has 
undergone since its creation until now. In imperative object 
languages such as C++, Java, etc., only the last state is usually 
retained, and the computer variables associated with the 
attributes of the instance are assigned during the lifetime of the 
object, without any possibility. back on the previous states of 
this object. In the OO-Prolog language, an object is 
characterized by its history and behaviour. Although the entire 
history of an object is available, you can access by default only 
the last state, that is to say the most recent, as in the example 
below. 
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?-...., P <- (setval(x(_),5), setval(x(_),10), getval(x(_),X)). 
{...,X = 10} 
 
Each change made during the deduction is automatically 
defeated by backtracking. As the resolution time goes back 
when looking for new branches leading to new solutions, this 
is translated operationally into OO-Prolog by the restoration of 
the previous states when there is backtracking. Time then has a 
tree structure. 
 
?-....,P <- ( setval(x(_),5),(setval(x(_),10);setval(x(_), 
20)),getval(x(_),X). 
 
{..., X = 10} 
{..., X = 20} 
 
In order to allow access to any version of an object, each 
version is completely characterized by its creation time. 
Implantation is done using a temporal mechanism. A global 
time clock for creating versions is initialized to zero at the 
beginning of the deduction. It is incremented by one unit at 
each change and decremented during a "backtracking". 
 
?-....,P <- ( setval(x(_),5,T1),  
 
(setval(x(_),10,T2);setval(x(_),20,T2)),getval(x(_),X,T1),  
getval(x(_),Y,T2) ). 
 
{..., T1 = ..., T2 = ..., X = 5, Y = 10} 
{..., T1 = ..., T2 = ..., X = 5, Y = 20} 
 
We see in this example that the value of the abscissa of P is 5 
at time T1 and 10 or 20 at time T2. Time is manipulated here 
explicitly. 
 
Dynamic creation of an Idn+1 object consists in adding the Idn 

+ 1 object in the uninstantiated part of the object environment. 
Suppose that ENV = [next( F ), clock([0|_]),...,date(0), Id1:E1,  

Id2:E2,...,Idn:En] is the state of the environment before 

creating the Idn+1 object. So after creating this object, ENV 

becomes: 
 
ENV = [next([next(F’),date(1),Idn+1:En+1]), clock([0,1|_]), 

date(0),Id1:E1,...,Idn:En]. 

 
with En+1 = [next(_),date(1),...]. It's as if all other objects have 

been duplicated. However, we can see that there is no 
redundancy. This creation is carried out by the methods 
newObject (O, E) (formerly denoted new) and newCObject (O, 
E) (formerly denoted create) whose effect is to create the 
object O with the state E. The newCObject method (O, E) has 
the effect of automatically creating and classifying the newly 
created object. 
 
Example: 
 
?- #’Point’ <- newObject(P,[]), P <- display. 
TERMINAL :: < #[#'Point', 5] > 
class(#'Object') <- #Point 
x(#'Point') <- 0 
y(#'Point') <- 0 
{P = #[#'Point', 5]} 
 

Assigning a value to an attribute 
 
The assignment operation is to give a value to an attribute. In 
the OO-Prolog language, this operation is reversible because it 
is possible to return, by backspace, on the previous states of an 
object. When an attribute Att, having the value Val, receives a 
new value NVal, instead of overwriting the old value, as in the 
imperative approach of the programming, one saves the new 
value in the uninstantiated part of the structure representing the 
state of the object. Let's illustrate this procedure with a simple 
example. Consider the state of a point on the plane P at time 0. 
E = [next(X), statut(_), date(0), class(#’Object’) := #’Point’, 
x(#’Point’) := 1, y(#’Point’) := 2]  
 
After assigning the value 3 to the attribute x (# 'Point') of P, E 
is modified as follows: 
 
E = [next([next(X’), date(1),x(#’Point’) := 3] ), statut(_), 
date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1, 
y(#’Point’) := 2]. 
 
After performing this operation, we obtain another state of the 
object P corresponding to the date date (1). The assignment is 
performed by the setval (Att, Val), setval (Att, Val, Date), 
setvalc (Att, Val), setvalc (Att, Val, Date) methods that take an 
attribute and a value as input. possibly returns the date 
corresponding to the creation of a new state of the modified 
object. The only difference between setval and setvalc 
(formerly setv) is that the application of setvalc to an object is 
followed by an automatic classification of that object. In both 
cases, there is control of the type of the value Val passed as 
argument of the method. With the initial state of our 
environment above, we have: 
 
?- P <- setval(x(I),3,Date). 
 
{P= #[#'Point',1], I = #'Point', Date = 1} 
 
and of course we can also have, as in Prolog 
?- P <- setval(x(_),3,1). 
{} 
 
which leads to a success. 
There are four methods to access the value of an attribute: 
getval(Att,Val), getval(Att,Val,Date), getv(Att,Val), 
getv(Att,Val,Date) 
 
Example 
 

?- P <- (setval(x(_),3,Date), getval(x(_),X,0), getval(y(_),Y)).  
{P= #[#'Point',1], X = 1, Y = 2} 
?- P <- (setval(x(_),3,Date), getv(x(_),X,Date)). 
{P= #[#'Point',1], Date = 1, X = 1} 
{P= #[#'Point',1], Date = 1, X = 3} 
 

As in Prolog, access operations to the value of an attribute can 
be used to assign, unification, a value to an attribute, if the 
initial value of the attribute at the given time is a free variable. 
?- ..., P  <- ( setval(x(_),Val), getval(x(_),3) ).  
{..., P= #[#'Point',1], Val = 3} 
 

Deleting a value from an attribute 
 

The operation of deleting a value to an attribute is defined as 
the assignment of a variable not instantiated to this attribute. 
This makes it possible to cancel the previous value on the same 
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date and thus define a future for this variable. The attribute can 
thus be considered as having no value yet. 
 
Rules for optimizing the global clock management process 
 
In order to optimize the management of global clock changes 
and dates, we have introduced the following rules: 
 

 The global clock can be incremented only when a 
change of state affects that concerns a variable already 
instantiated; 

 The incrementation of the dates can take place only 
during a change of value of an already affected variable. 

 In other cases, the global clock remains stable and 
undergoes no change. 

 

Let's illustrate these rules with a simple example. Consider 
once more the state of a point on the plane P at time t = 0. 
E = [next(X), statut(_), date(0), class(#’Object’) := #’Point’, 
x(#’Point’) := 1]  
 
After assigning the value 3 to the attribute x (# 'Point') of P, E 
is modified as follows: 
 

E = [next([next(X’), date(1),x(#’Point’) := 3] ), statut(_), 
date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1]. 
 
Consider now the assignment of the value 2 to the attribute y 
(# 'Point') of P. E is then modified as follows: 
 
E = [next([next(next([next(X’’), date(1),y(#’Point’) := 2] )), 
date(1),x(#’Point’) := 3] ), statut(_), date(0), class(#’Object’) 
:= #’Point’, x(#’Point’) := 1]. 
 

This time, the clock does not change, so the change only 
affects an attribute that was not instantiated on the current date. 
This same behavior is preserved when the change is on an 
earlier date. Thus, assigning the value 5 to the x (# 'Point') 
attribute of P on date 0 will not change the global clock as 
shown in the code below. The environment E is then modified 
as follows: 
 

E = [next([next(next([next(next([next(X’’’), date(1), 
x(#’Point’) := 2] )), date(1),y(#’Point’) := 2] )), 
date(1),x(#’Point’) := 3] ), status(_), date(0), class(#’Object’) 
:= #’Point’, x(#’Point’) := 1]. 
 

Since the x attribute was not yet assigned to date 1, the state 
change made does not change the global clock. 
 

Implantation 
 

The version mechanism described above is also the one used in 
the ObjTL language (a prototype whose various extensions led 
to the realization of the OO-Prolog language) [Ngomo 95a, 
95b, 95c]. However, in ObjTL the object environment appears 
explicitly both in the signature of a method and in the protocol 
of a message sending: 
 

Definition of a method 
 

<class> << Env >> <selector>(<arg1>,...,<argn>) :- <body>.  
 

Sending message 
<object> << Env <- <message> sends goal B to object 
<object>, the search for the method begins at its instantiation 
class. 

 <object> as <class> << Env <- <message> sends the 
goal <message> to the object <object>, the search for 
the method begins at the class <class>. 

 <object> << Env <- <message> sends goal B to object 
<object>, the search for the method starts at its 
instantiation class and the search strategy is a 
linearization. 

 <object> as <class> << Env <- <message> sends the 
goal <message> to the object <object>, the search for 
the method starts at the level of the class <class> and 
the search strategy is a linearization. 

 
The explicit use of the object environment by the user can be a 
source of problems: 
 

 A rather heavy syntax compared to the conventional 
syntax; 

 There is probably a risk of the user manipulating the 
object environment directly without going through the 
appropriate methods. 

 
It therefore seemed useful to polish this syntax by relieving the 
user of the management of this environment. This allows for a 
simpler syntax that is closer to conventional syntax. 
 

 Definition of a method: The form of the object clauses 
becomes: 

 <class> :: <selector>arg1>,...,<argn>) :- <body>.  

 Sending message: a message sending in one of the 
following forms: 

 <object> <- <message> sends goal B to object 
<object>, the search for the method starts at its 
instantiation class. 

 <object> <- (<class>: <message>) sends the goal 
<message> to the object <object>, the search for the 
method starts at the level of the class <class>. 

 <object> <- <message> sends goal B to object 
<object>, the search for the method starts at its 
instantiation class and the search strategy is a 
linearization. 

 <object> <- (<class>: <message>) sends the goal 
<message> to the object <object>, the search for the 
method starts at the level of the class <class> and the 
search strategy is a linearization. 

 
Example: For the class of the points of the plane we will be 
able to define the method of access to the value of the attribute 
x (#'Point') as follows: 

 
#’Point’ :: getx(X) :- self <- getval(x(#’Point’),X). 
A query can then be: 
?- #’Point’ <- newObject(P,[x(_):=2,y(_):=3]),P <- getx(X). 

 
This result is obtained by meta-interpretation. Let A be the 
query to be reduced. Query A can contain standard Prolog 
literals or object-literals (sending messages). Among classical 
literals, we will distinguish those associated with system 
predicates and others. They will be solved by the interpreter 
Prolog. Similarly, object literals associated with the basic 
methods will be treated differently. They will be solved by a 
low level interpreter. 
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The formal unification of Prolog terms 
 
The heart of the computational model of logic programs is the 
unification algorithm. Unification makes it possible to 
determine, if it exists, the common instance of two terms. 
Unification is at the root of most automatic deduction work 
and the use of logical inference in artificial intelligence. A 
term t is a common instance of two terms t1 and t2 if there are 
substitutions 1 and 2 such that t equals 1t1 and equal to 
2t2. A term s is more general than a term t if t is an instance 
of s, but s is not an instance of t. A term s is an alphabetical 
variant of a term t if both s is an instance of t and t is an 
instance of s. A two-term unifier is a substitution that makes 
the terms identical. If two terms have a unifying unit, we will 
say that they unite. There is a close relationship between 
unifiers and common instances. Any unifier determines a 
common instance, and conversely any common instance 
determines a unifier. A more general unifier or "upg" of two 
terms is a unifier such that the associated common instance is 
the most general one. If two terms unite then there is a single 
more general unifier. This uniqueness is to "rename" variables 
closely. Equivalently, two univariate terms have a single most 
general common instance, an alphabetic variant. 
 
A unification algorithm calculates the most general unifier of 
two terms, if any, and displays "failure" otherwise. The 
algorithm for unification presented below is based on the 
solution of equations. The input for the algorithm consists of 
two terms, T1 and T2. The output of the algorithm is the "upg" 
of the two terms if they unify or "fail" if they do not unite. The 
algorithm uses a stack to store the equations to solve and a 
location  to group the substitution of the output. The vast 
majority of Prolog systems do not use the classic unification 
algorithm, deliberately choosing not to perform the occurrence 
test (a variable can be unified to a term containing it). This 
choice is not without problems at the theoretical level, since it 
defies the model of the universe of Herbrand limited finite 
terms [Herbrand 67]. At a more operational level, the 
implementation without special precautions of such an 
algorithm, ignoring the test of occurrence, makes it subject to 
loops. Thus, unlike the original unification algorithm 
[Robinson 65], a variable can be linked to a term containing it. 
The main reason for this omission is a significant gain in 
execution time. Indeed, performing the test of occurrence is an 
expensive operation since for each substitution creation {(x, 
t)}, it makes it necessary to go completely through the term t in 
order to determine whether the variable x is or is not present in 
t. 
 
In OO-Prolog, an object has a unique identifier that 
distinguishes objects. Two different objects can not have the 
same identifier. In this case, the application of the Prolog 
unification procedure to two OO-Prolog objects will always 
result in a failure since two distinct identifiers can never be 
unified. So we have to modify the classic procedure of Prolog 
unification so that it takes into account the objects and the 
inheritance relation. In order for the object layer to react 
homogeneously with the rest of the Prolog language, it must 
have mechanisms identical to those of all the types of data 
present in Prolog. We propose to define a specific mechanism 
to take into account the objects. In the case of objects, the use 
of this primitive poses problems of names referencing the 
objects. Two structurally unified objects can have different 
identifiers. There is no valid justification for accepting a 
success for the unification of different object names while the 

unification of distinct functor terms fails even if all the other 
elements composing the terms are identical [Cervoni 94]. As a 
result, we are obliged to have specific operators for object 
names. In OO-Prolog the name of an object is preceded by the 
operator #: #<name>. For example "#'Point'" instead of 'Point'. 
This notation distinguishes object names from other Prolog 
terms. 
 
Abstract Interpreter for OO-Prolog Programs 
 
The abstract interpreter for OO-Prolog programs is an 
extension of the Prolog interpreter to logical objects. This 
interpreter is a modification of the abstract interpreter for 
Prolog [Sterling 90] programs. It gives the solution of a 
question G relating to a program P. The output of the 
interpreter is an instance of G, if a demonstration of such an 
instance is found, or "failure" if there was failure during of the 
calculation. If non-object literals are reduced in the traditional 
way, reducing object literals requires additional processing to 
accommodate inheritance. Thus, if the current goal is, for 
example, of the form O <- M, then this literal can not be 
unified with any clause in P. The processing consists of finding 
the class of the object receiving the message, C, and browse 
the subgraph of C to search for the definition class or classes of 
method M. For each class found, there is a (renamed) clause C 
:: M '<- B1, ..., Bn, n ≥ 0. Once such a clause is chosen, the 
processing continues as in the classical case by replacing in the 
resolvent the current goal by the body of the clause B1, ..., Bn. 
Then, we apply not only to the resolvent and to G, but also to 
E, an incomplete dynamic structure that undergoes unifications 
during processing. 
 
Unification Algorithm Extensions 
 
The unification of two terms of the same class mainly consists 
of recursively unifying the fields of the structures of the 
instances. In the case of objects, two instances of the same 
class are semantically univariable if and only if the values of 
their respective attributes are uniformable in the sense of 
Prolog or semantically uniformable. This definition does not 
allow for example to unify a rectangle of length 4 and width 4 
to a square of side 4, unless we use the classification 
mechanism. It is still necessary that the user explicitly express 
the classification constraints. If the instances are not of the 
same class, it is necessary to search between them for a 
possible inheritance relation which would allow to unify them, 
by specialization or by generalization. Extensions to the 
algorithm presented previously are described in [Ngomo 96]. 
We do not describe them in this article that focuses on the 
dynamic nature of objects. 
 
Unification Algorithm Extensions 
 
The unification of two terms of the same class mainly consists 
of recursively unifying the fields of the structures of the 
instances. In the case of objects, two instances of the same 
class are semantically univariable if and only if the values of 
their respective attributes are uniformable in the sense of 
Prolog or semantically uniformable. This definition does not 
allow for example to unify a rectangle R = (length: 4, width: 4) 
to a square C of side equal to 4, unless we use the classification 
mechanism. It is still necessary that the user explicitly express 
the classification constraints. If the instances are not of the 
same class, it is necessary to search between them for a 
possible inheritance relation which would allow to unify them, 
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by specialization or by generalization. Extensions to the 
algorithm presented previously are described in [Ngomo 96]. 
We do not describe them in this paper that focuses on the 
dynamic nature of objects. 
 
Some properties of the model 
 
A simple syntax 
 
The OO-Prolog language has a simple syntax similar to that of 
conventional object languages. 
 
Changing the quantification of variables 
 
In OO-Prolog, the problem of changing the quantization of 
logical variables is solved by using existential environments, in 
which all variables are quantized existentially. Thus, the 
following queries 
?- #’Point’ <- new(P,[]), P <- setval(x(_),X,D), X = 5, P <- 
getval(x(_),Y). 
?- #’Point’ <- new(P,[]), X = 5, P <- (setval(x(_),X,D), 
getval(x(_),Y)). 
both lead to the same result: {..., X = 5, Y = 5}. 
 
Consistency of updates 
 
The approach presented here allows you to manage updates 
consistently. In contrast to imperative languages that use 
Prolog's "assert" and "retract" predicates (such as Prolog++ 
[Moss 86, 90, 94] [LPA 2017]) or that implement imperative 
variables (such as ESP [Chikayama 83, 84]), changes in OO-
Prolog are made and undone in synchronization with the 
backtracking. This concerns all creation, modification and 
deletion operations. We can then have: 
 
? #’Point’ <- new(P,[]), P <- ( (setval(x(_),2,D) ; 
setval(x(_),5,D)), getval(x(_),Val),delete(x(_) ). 
{..., D = 1, Val =2} 
{..., D = 1, Val =5} 
 
Formal significance of updates 
 
During the evolution of the universe of objects, each state or 
layer corresponds to a given moment. Let E be the set of these 
states and Rp be the temporal precedence relation between two 

states of the universe E: << for all et and et' comparable 

elements of E (t and t' being two points of the resolution time, 
et and et’ are respectively the state of the universe at time t and 

at time t'), then: (et Rp  et’) or (et = et’) or (et Rp  et’) >>. In 

this case, if et Rp  et’, then et’ inherits somehow from et. Since 

the resolution time is arborescent, the relation Rp is a partial 

order relation since we can not necessarily compare two 
elements of E. Our temporal model M is then composed of the 
set E, the binary relation Rp on E and a function I: E x 

{Formulas of language} {1 , 0} which associates to each 
formula of language its values of truth to the different possible 
states of the universe. The interpretation of a formula is then 
done relative to a given state of the universe of objects, 
considering an interpretation as a couple (M, e). If ei is a 
version before ej then ej somehow inherit ei. Each copy 
generated contains locally only the information that 
differentiates it from its generator. The rest is somehow 

inherited. The information is stored in this structure without 
redundancy. The model of time is here an "finitary infinite" 
tree, that is to say a tree whose each node admits a non-zero 
finite number of successors. The sequence corresponds to the 
particular case where this number is worth the unit. In a strictly 
temporal interpretation, the sequence of situations represents 
the evolution of the state of the world over time. 
 
Conclusion and perspectives 
 
State and state change modeling of an object is a central 
problem in object-based logic programming. This article 
presents an in-depth discussion of existing approaches. He then 
proposes a new mechanism for object versions. This 
mechanism is based on the unification and use of incomplete 
structures that are inherently dynamic and thus represent the 
dynamic aspects of logical objects. He uses unification as a 
matching tool. As a result, the state changes are made and 
undone in synchronization with the backtracking. An object is 
then characterized by its behavior and its history. The set of 
states is the set of versions of an object. These versions are 
ordered according to a partial order which expresses the 
successive derivations of a version, and one speaks about tree 
of versions. One of the problems often encountered in 
versioning models is the consistency of the versions between 
them and its maintenance through consistent configurations. 
The versioning mechanism of the OO-Prolog language offers 
several advantages, both theoretically and practically: 
 

 Compared to imperative approaches that introduce edge 
effects programming, it has the advantage of having a 
declarative, clear and coherent semantics; 

 The changes are expressed in terms of a search tree, that 
is to say a dynamic structure of logic programming; 

 The deletion of a value at an attribute on a given date 
from the global clock corresponding to the assignment 
of a variable to this attribute, which opens an evolution 
perspective to this attribute (a future); 

 Thanks to the use of an existential environment with an 
always available future, it facilitates the links between 
variables; which brings a solution to the problem of 
changing the quantification of variables; 

 In relation to the interaction between version 
management, the identity of an object and the type of an 
object, OO-Prolog adopts a dynamic solution. An object 
O can reference an object O '. If the O object has 
multiple versions, the reference is dynamic and 
interpreted when the program runs. A dynamic 
reference can be considered as a query on all versions. 

 
Our work continues in optimizing the implementation 
techniques of the proposed mechanism. The objects being 
manipulated in the dynamic space, this can quickly lead to a 
saturation of the batteries of this space. It is then necessary to 
limit as much as possible the write accesses in this 
environment which, with respect to the code zone, is much 
more limited. This is not a pressing need, given the current 
power of computers and their storage capacity. We simply 
want to increase the performance of our language. Our work 
also focuses on the design of a multi-tier architecture and 
service-oriented database query interface in OO-Prolog, with 
applications in several domains. Another avenue explored is 
the design of a service platform around the OO-Prolog 
language: interrogation service, resolution service, exchange 
service with other languages, etc. 
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