

 z

RESEARCH ARTICLE

A FULL DECLARATIVE APPROACH OF DYNAMIC LOGIC OBJECTS

*1Macaire Ngomo and 2Habib Abdulrab

1CM IT CONSEIL – 32 rue Milford Haven 10100 Romilly sur Seine (France)
2Institut National des Sciences Appliquées de Rouen – Laboratoire LITIS, Campus INSA de Rouen - Avenue de

l’Université, 76801 Saint-Étienne-du-Rouvray Cedex (France)

Received 26th March, 2018; Accepted 20th April, 2018; Published 18th May, 2018

ABSTRACT

The marriage of logic and objects is a very wide-ranging problem, approached with various approaches, depending on the
purpose. In this article, we are interested in the modelling of the state and the change of the state of an object in logic
programming. After a state of the art on the subject, presenting the various aspects as well as different solutions proposed in the
literature, the article then proposes a mechanism of versions of objects based on the mechanism of unification and on the use
incomplete structures. Indeed, the overview of an incomplete structure can be used to allow the entry of new information by
means of unification and thus to foresee the future. This mechanism makes it possible to construct the history of an object by
unification and to undo it by backtracking. The changes of state are thus made and defeated, without effects of edge, in
synchronization with the backtrack.

Key words: Logic Objects, Object-Oriented Programming, Logic Programming, Prolog, OO-Prolog, Modelling, Object Condition, Object State
Change, Semantics of State Change.

Copyright © 2018, Macaire Ngomo and Habib Abdulrab. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Macaire Ngomo and Habib Abdulrab. 2018. “A full declarative approach of dynamic logic objects” International Journal of Current
Research in Life Sciences, 7, (05), 2036-2051.

INTRODUCTION

The idea of combining the aspects of object-based
programming with those of logic programming dates back to
the early 1980s and motivated many researchers. The goal is to
take advantage of the two paradigms and reduce their
respective disadvantages. Object-oriented programming has
proven to be appropriate for the construction of complex
software systems. On the other hand, logic programming is
distinguished by its declarative charm or flavour, built-in
inference and well-defined semantic capabilities. The marriage
of these two paradigms can be justified in these terms and
should make it possible to increase the possibilities of use, to
widen the fields of application of the languages that result from
it, and to lead to more efficient, more intelligent systems.
These include developing complex representation and
knowledge processing languages. Logic programming provides
an opportunity to formulate and solve problems declaratively.
In logic programming languages, problem solving will be done
by describing what needs to be done instead of describing how
it should be done as long as this is the case when using
procedural programming languages. The declarative way of
programming offers a good method for building the software,
for example for knowledge of systems, database applications,

*Corresponding author: Macaire Ngomo,
CM IT CONSEIL – 32 rue Milford Haven 10100 Romilly sur Seine (France)

etc., because software developers must then be much less
concerned with the procedural aspects of the software. their
programs because they use a conventional programming
language. In addition, object-oriented programming as a
special programming paradigm provides benefits for software
engineering. In object-oriented programming languages, the
relevant world to model is considered a collection of stand-
alone objects that encapsulate data and procedures. Objects are
hierarchically structured and can inherit methods, namely data
and procedures. This improves the reusability and
maintainability of the software. Although several attempts
have been made to combine both logic and object-oriented
programming, the characteristics of the two paradigms have
often not been met, including the declarative semantics of logic
programming. In this paper, our interest is focused on the
modelling of the state and the change of the state of an object
in logic programming, with emphasis on the preservation of
the declarative semantics of programming in logic. This is a
difficult subject in that it raises the problem of the formal
semantics of updates. The article is organized as follows. In the
first part we describe the different aspects of the problem and
present the existing solutions. In the second part, we present a
new mechanism of object versions, based on the unification
mechanism and on incomplete structures. This mechanism
implemented in the OO-Prolog language is then compared to
other approaches. OO-Prolog is a programming language that

ISSN: 2319-9490

International Journal of Current Research in Life Sciences
Vol. 07, No. 05, pp.2036-2051, May, 2018

 Available online at http://www.ijcrls.com

consistently integrates programming paradigms into logic and
object-based programming. It is fully developed in Prolog. In
this language, an object is a named collection of Prolog
predicate definitions. In this sense, an object is similar to a
Prolog module. The object system is defined as an extension of
the Prolog module system. In addition, an object can have
attributes with values that define its history and a future that
gives it a perspective of evolution in tree time. The predicate
definitions belonging to an object are called methods. Thus, an
object is conceptually a named collection of methods and
attributes. Each object has a unique identifier. Some of the
methods defined for an object should not be stored in the
object explicitly, but rather are shared with other objects by the
inheritance mechanism. The object system allows objects to be
defined in a file, or created dynamically during program
execution. In any case, during the resolution, the programs are
loaded into the resolution environment.

Objects defined in a file are integrated into the Prolog
environment. That is, objects have a specific syntax like Prolog
terms, and can be loaded into the Prolog environment. The
defined objects can be either static or dynamic. In addition, the
methods can be either dynamic or static. These properties are
inherited by the sub-objects. Objects created during execution
are dynamic. The inheritance mechanism is implemented using
the import mechanism of the module system. Inheritance is a
default inheritance by the overriding mechanism, which means
that if a method is defined locally, and the same method is
defined in a super object, then the clauses of the super method
are not part of the definition of the locale, unless explicitly
designating the class that defines the desired behaviour. As
usual in Prolog, the methods can be undefined in a definite
way, and alternative answers can be retrieved through
backtracking. Using the delegation mechanism, other methods
of knowledge sharing can be implemented by the user. In
objects, there is a first proto-object prototype called "object",
from which other objects can be constructed, directly or
indirectly.

State of the art

The different aspects of the problem

The behaviour of a logic variable

In traditional object languages (Java, C++ [Stroustrup 92],
CLOS [Bobrow 88a, 88b, Steele 90], Smalltalk-80 [Goldberg
83], Eiffel [Meyer 87a, 88, 90], etc.), state of an object is
represented by the values assigned to its imperative instance
variables and can be modified by assigning new values to these
variables. Each variable represents a memory location whose
contents may change by assigning a new value. However, a
logic variable represents a unique but unknown entity and not a
memory location whose contents can be changed by assigning
a new value. It cannot therefore substitute for a mandatory
variable. Once a logic variable has been instantiated, the only
way to undo its value is to go back (backtrack).

The intrinsic limitations of first-order logic

Another basic difficulty of this integration is that the first-order
logic programming on which a large number of logic
programming languages such as Prolog - the best-known and
most widely used - seems to be fundamentally incompatible
with the change of state. Indeed, the change of state introduces
a temporal element; hence the need to look for alternative

semantics. Ideally, we would like formal semantics, using, if
possible, well-defined logics. Note that logic programming is
not linked to a logic system like first-order logic or a language
like Prolog. It groups together all the languages based on a
well-defined logic system.

The search for a balance between theoretical and practical
aspects

In object-based programming, we must propose a way to
model the state of objects and introduce state changes by
finding a balance between the respect of the declarative
semantics and the effectiveness of the implementation
mechanisms so that applications are not too penalized in terms
of performance at runtime. In practice, it is always necessary to
look for the best compromise between these two criteria. This
goal must be achieved by providing meaningful and
understandable operational semantics, based on effective
inference mechanisms [Malenfant 90b] and a logic system that
facilitates implementation.

Identification of objects

For [Bouché 94] who uses "Booch thought" [Booch 92], "an
object is defined as anything that has an identity, a state and a
behaviour". "The identity of an object is the property of an
object that distinguishes it from all others" [Khoshafian 86].
An object behaves like a living being, whose state evolves with
time, but which one can always identify, in its different forms
(states). In addition to the flexibility of manipulation it offers,
the identity of the objects also serves to their "modifiability".
These two notions are closely related. The absence of this
important property in languages like CIEL [Gandriau 88] or
LOGIN [Gallaire 86] has important consequences on the
semantics of state change. In particular, two equal objects (in
the sense of equality of structures) will necessarily be identical
since the only possible structural comparison makes them
identical.

The influence of the order of operations on the state of
objects

The behaviour of an object is influenced by its history; the
order in which operations are applied to an object is full of
consequences. The reason for this behaviour depends on the
time and existence of a state in the object. The classic image of
time, used in object systems (imperative approach of
programming), is the one used in Newtonian physics. Time is a
"one-dimensional linear continuum". In certain theories or
modes of reasoning, we are led to use a non-linear time model,
where a moment may, for example, have several futures
unrelated to each other. This is true for the temporal logic that
uses a tree time.

Semantic problems of "assert" and "retract" update
predicates

Several Prolog systems offer "assert" and "retract" update
predicates to dynamically modify programs and have long
sought to define reasonable semantics for them [Moss 86;
Lindholm 87]. These predicates have been known since their
appearance as one of the gray areas of the Prolog language and
their semantics are procedural. Even worse, it is not defined in
a standard way. Out of twelve Prolog sites he studied in 1986,
Moss distinguished nine different behaviours from the "assert"

2037 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

and "retract" predicates [Moss 86] and identified three major
issues. First, since the "assert" and "retract" predicates result in
dynamic program changes, the queries that contain them
become sensitive to the order in which the goals are executed.
Second, the influence of the predicates on the goals already
called in the presence of the backspace; the problem of the
visibility of the effects of the "assert" and "retract" predicates
then arises for the goals already called. This leads to problems
of consistency and program termination. Finally, the use of the
"assert" and "retract" predicates raises the problem of changing
the quantization of variables that occurs when dynamically
adding a partially instantiated rule that can be instantiated later.
Indeed, the logic variables in a query are quantized
existentially while the variables in a rule are quantized
universally [Warren 84; Bowen 85b]. Thus, when an "assert"
adds a rule containing variables to the base, the status of these
variables changes from an existential quantization in the query
to universal quantization in the database. When we use the
rules (facts) to represent the objects, we are then faced with
this problem. Three solutions are proposed in the literature to
treat this problem [Chen 88a]:

 Allow only the addition of fully instantiated facts
[Warren 84]. This solution is too restrictive and
therefore does not allow the modelling of situations
where the programmer has only partial knowledge of
the domain (the unknown being represented by free
variables).

 Explicit quantification of variables [Warren 84;
Machanda 88]. This solution is interesting but a bit of a
constraint for the programmer who does not see his
programming efforts diminish.

 The management of existential variables. This solution
is interesting since it allows a natural link between the
variables in a query and those in the database. However,
it is difficult because it poses the problem of the
management of existential variables in the database.

Improvements in the behaviour of the "assert" and "retract"
update predicates

Three major movements have shown the need to define a
coherent semantics of "assert" and "retract". First, the
portability requirements of large applications written in Prolog
have emphasized the fact that consistency between Prolog
implementations is necessary, even for predicates recognized
as not having declarative logic semantics [Lindholm 87]. Then,
to consistently handle updates and avoid edge effects, some
Prolog systems have predicates for temporary addition of rules
to the database. Finally, deductive databases, in connection
with logic programming and Prolog as programming and query
language, require well defined semantics of updates to improve
program comprehension and reliability [Warren 84; Naish 87;
Machanda 88].

Solutions for Modelling the State and State Change of an
Object in Object-Based Logic Programming

Several approaches have been proposed to model the state of
an object in object-based programming. In this section, we will
describe the main existing proposals. The question of
modelling the change of state of an object is often closely
linked to the choice of an approach for the representation of its
state. Thus, we will present the various modes of
representation of the state of an object to discuss more
precisely how is to model the change of state in each case.

Modelling based on imperative variables

This approach consists of directly transplanting, in a logic
programming language, regardless of the declarative
semantics, imperative variables as they exist in traditional
object programming. The state of an object is then represented
by a set of instance variables to which values are assigned
using an assignment statement. State changes are done in a
destructive way, with no possibility of backtracking. This
approach is essentially pragmatic and incompatible with the
declarative style of logic programming. It is especially
appreciated for its efficiency of calculation that by a need of
proof of computation. Several languages are constructed
according to this schema: ESP [Chikayama 83, 84], LOOKS
[Misoguchi 84], SPOOL [Fukunaga 86], Orient84 / K
[Ishikawa 86a, 86b, 87], PROBE [Gandilhon 87], Prolog
Objects, etc. To clarify our point, here are two languages
representative of this approach. Objects Prolog is an extension
of Prolog SICStus [SICStus Prolog, 2017]. Objects Prolog is
based on the concept of prototype. In object-oriented
programming, a prototype is an object that represents a typical
behaviour of a certain concept. A prototype can be used as is
or as a template to build other objects that share some of the
characteristics of the prototype object. These objects can
themselves become specialized prototypes and used to build
other objects and so on. The basic mechanism for sharing is
inheritance delegation. Using the delegation mechanism of an
object can convey a message to another object to invoke a
method defined by the recipient, but interpreted in the context
of the sender.

In Prolog Objects, an object is a named collection of predicate
definitions. In this sense, an object is similar to a Prolog
module. The object system can be seen as an extension of the
SICStus Prolog module system. In addition, an object may
have attributes that are editable. Predicates belonging to an
object are called methods. Thus, an object is conceptually a
named collection of methods and attributes. Some of the
methods defined for an object should not be stored in the
object explicitly, but rather are shared with other objects by the
inheritance mechanism. The inheritance mechanism is
implemented using the import mechanism of the module
system. As usual in Prolog, the methods can be undefined in a
definite way, and alternative answers can be obtained through
backtracking. Prolog++ is an APL Associates product for
object-oriented programming extensions of APL Prolog [APL
2017]. Prolog++ is a complete object-oriented system
integrated into a Prolog framework. Objects and instances
provide a convenient way to structure related knowledge and
data elements. A hierarchy of objects (or classes) makes it
possible to define the information at the highest relevant level
and to inherit it via the taxonomy. This distributes data and
functionality along a line from general to specific. By
segmenting information with this approach, complex data
relationships can be efficiently managed. The ability to define
object taxonomies with Prolog ++ and manipulate them with
Prolog rules provides a powerful combination for serious
programmers. Most Prolog ++ programs can be easily
converted into Prolog Object programs.

Modelling based on logic terms

Another commonly used approach is to make an object a logic
term also called "object-term". In logic programming, a closed
functional term represents an element of the domain. It can

2038 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

represent structured data, analogous to a structure of a
structured programming language such as C, Java, PHP, etc.
The functional symbol is then interpreted as the name of the
type or class. The arguments of the term represent the state of
the object. In the system of Zaniolo [Zaniolo 84] and Stabler
[Stabler 86], for example, the term point (Abs, Ord) represents
a set of objects and has as possible instance the term point
(2,3). CIEL [Gandriau 88] is another language that is based on
this approach. In this language the class Point can be defined
as follows:

(class Point {abs: Integer, ord: Integer } (methods
Print (Point {abs: x, ord: y}) -> write(x),write(' -
'),write(y);...))

An instance of this class can be defined by instantiating the
arguments of this object-term: Point{abs: 2, ord: 3}.

In general, the functor of a term-object (Point, in the example
above) represents the name of a class. The definition of an
instance is done by instantiating the arguments of the object-
term with constant values. Based on this reasoning, several
languages associate logic terms and objects and make an object
a logic term, also called "object-term".

In LOGIN [Aït-Kaci, 86], LIFE [Aït-Kaci, 88, 89a, 89b, 91,
93] and U-Log [Gloess, 84, 85, 89a, 89b, 90, 91, 95] which use
this mode of representation, an object is represented by a "Psi-
term". For example, the Psi-term below represents the structure
of the instances of the person class.

person(name => N:string, age => Age:integer, father =>
person(name => N))

As in the first languages, a particular instance is defined by
instantiating the arguments of the Psi-term by constancy
values: person (name => dupond, age => 12, father => person
(name => dupond))

In this approach, state changes are made by creating a new
term with new parameters. As the example below shows, CIEL
uses this approach and requires the object on which a method
operates to explicitly appear as an input and output argument
to the method: push(stack(S),X,stack([X|S])).

In fact, CIEL is a logic programming language in which the
notion of assignment does not exist.

The main consequence is that the value of a class instance can
not change. To simulate the state change of an instance when
applying a method, another object is created by unification.
Here, the management of the consumption and the production
of the terms-objects becomes the responsibility of the
programmer who must take great care to pass from one method
call to the other the good state of the object. This approach
preserves the declarative semantics of programs and does not
go beyond the framework of first-order logic. The logic object-
term approach is interesting from a logic point of view insofar
as it preserves the declarative semantics of logic programming.
However, from the point of view of object-oriented
programming, it poses several problems and is therefore often
criticized:

 The difference between class and instance is not as clear
as in conventional object languages.

 The identifier of an object is seen as a pointer to the
structure of the object. Languages using the logic-based
approach are often devoid of this important feature of
objects and do not distinguish two equal but not
identical objects.

 Failure to respect the principle of encapsulation.
 Syntactic verbosity: the objects being identified by their

data, the user directly manipulates the whole structure
of the object, with all its parameters. The number of
arguments of an object-term being sometimes high; this
leads to languages whose writing is characterized by
syntactic verbosity.

This approach is therefore interesting, but we must look for a
way to solve these different points.

Modelling based on atomic formulas

Conery's logic objects [Conery 87a, 87b, 88a, 88b] are another
technique for using first-order logic to model objects with an
editable internal state. The goal is always to introduce the
advantages of object programming in logic programming so as
to have a minimum impact on the existing logic programming
structure (that of Prolog in particular). It is a system in which
the operational semantics are defined by proof of resolution in
the logic of the first order. In Conery's schema, a logic object is
represented by an atomic or literal formula. In a program, the
set of predicate symbols is divided into two subsets: one for
object names and another for procedure names. Literals with
object names as predicate symbols are called "object literals",
and literals formed from procedure names are called
"procedure literals". The program below contains a definition
of the class "Pile" which allows illustrating these two notions.
In this one, stack (ID, L) is an object literal and empty stack
(ID), stack (X, ID), depilate (X, ID) and vertex (X, ID) are
procedural literals.

Description of valid batteries

A valid stack is here an empty stack or a stack whose all
elements are integers.

stack(ID, []).
stack (ID, [X|L]) <- integer(X) /\ stack (ID,L).

How to create a stack

The creation of a stack consists in introducing in the resolvent
(expression introduced in order to reach or complete a
solution) the object literal stack (ID, []). The "new_pile"
method below has a special role in the description of the
"Stack" class. Its function is to introduce into the system a new
object literal.

Methods of the class 'Stack'

emptystack(ID) /\ stack(ID, [])<- stack (ID, []). % emptiness
test.
headup(X,ID) /\ stack(ID,S)<- integer(X) /\ stack(ID,[X|S]).
unstack(X,ID) /\ stack (ID, [X|S])<- stack (ID,S).
top(X,ID) /\ stack (ID,[X|S])<- stack (ID,[X|S]).

A query is really a pair of queries that are linked through
shared variables. Part of the query concerns only literal
procedures; the other consists of object literals. Complete

2039 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

proof requires both evidence of the existence of objects and
proof that these objects satisfy a given set of constraints. Both
sub-proofs are linked and executed simultaneously. Object
literals are used to define objects and their states. A positive
object literal (at the head of an object clause) defines the
structure (name and arguments) of a class. Negative object
literals (in the body of an object clause) represent class
instances, where arguments are the current values of state
variables. On the other hand, the procedure literals at the head
of an object clause define the name and list of parameters of
the methods. In the body of the clause, the procedure literals
define method calls. The table below provides the procedural
interpretation of a number of clauses, with various
combinations of object literals and procedures.

In Table 1, p and q are literal-procedures; s and t are literal-
objects. The procedural interpretation of a negative object
literal is "to create an object with state s". A positive object
literal is a pre-condition for the execution of goals in the body
of an object clause. In other words, in the order in which the
goals in the body of a clause are invoked, there must be an
object that satisfies the head of the object clause. A rule with
an object literal at the head and another object literal of the
same name in the body (with new parameters) can then be
interpreted as a state transformation rule of an object. The state
changes of the objects are then made by this type of rules.
Semantically, Conery pays the high price because it allows the
user not to put the object in parameter methods. He prefers to
automatically process the consumption and production of
object literals. This automatic processing obliges him to create
a total order between the objects solved with the help of object
rules, which goes against the declarative semantics which is
insensitive to the order of reduction of the goals. In general, a
query, consisting of a mixture of object literals and procedure
literals, represents a query for proof of the existence of a set of
objects and for the accuracy of a number of conditions. Since
object clauses have declarative semantics, we can compare an
object proof with the more conventional one.

Logic objects give assignment semantics (assignment) in terms
of modified procedure proof. This allowed Conery to state that
the executions of the object programs correspond to the logical
consequences of the theories [Conery 88a]. Nevertheless, there
is no way to give declarative semantics as good as theoretical
proof. The lack of such declarative writing for objects weakens
the argument that logic objects are logical.
From the point of view of object-based programming, although
it introduces the notion of object identifier, it suffers from a
number of defects:

 The lack of structuring of programs (important aspect in
programming by objects); the structure of a program is
the same as that of a PROLOG program.

 As in the previous approach, the distinction between
classes and instances is not clear. In addition, a class
only exists by its methods. Indeed, the definition of a
class is done by declaring the rules that define the
behavior of its instances.

 If syntax verbosity is suppressed in the message sending
protocol, it remains in the signature of a method in
which the entire structure of the object must appear as a
literal.

 It is difficult to define inheritance with object clauses.
Indeed, a call to a literal procedure results in the call of
the associated object literal (explicitly bearing the name
of a class).

However, this system represents an interesting approach to
representing objects with state. By modifying the proof of
procedure, to allow the modelling of the assignment, we obtain
a system that makes it possible to simulate the change of state
rather than a purely descriptive formulation.

Modelling based on perpetual processes

This approach consists of modelling an object with a perpetual
process defined by a recursive predicate. As in the previous
approach, the predicate functor represents the name of the
object. Some arguments of this predicate are intended for the
representation of the state of the object. A perpetual process
characterizes what intuitively causes changes over time. The
change of state is then modelled by substituting for a goal-
process that unifies with one of the rules of the predicate-
object the goal-process network specified by the body of the
rule in question. Several languages are based on this approach.
These languages are often based on competing logic
programming languages such as Concurrent Prolog [Chapiro
83a, 83b, 86, 87, 89], KL1 (Knowledge Language 1).
Shapiro and Takeuchi [Shapiro 83b, 87] model an object with
Concurrent Prolog processes as in the example below that we
have already presented and which we voluntarily resume here
to illustrate this approach:

 counter([initialize | Messages],Etat) :-

counter(Messages?, 0).
 counter([up | Messages], State) :-
 New_State is State + 1, counter(Messages?, New_State?).
 counter ([down | Messages], State) :-
 New_State is Etat - 1, counter(Messages?, New_State?).
 counter([show(State) | Messages], State) :-
 counter(Messages?, State).
 counter([], State).% stopping the process.

Table 1. Procedural and declarative interpretation of the object clauses

Clause Declarative reading Procedural reading

p. p is true. the procedure p is solvent.
s. s is an object. s is a valid object.
<- p. call of the procedure p; proof of p.
<- s. create an object with state s.
p <- q. p is true if q is true. to solve p, solve q.
s <- t. s is an object if t is an object. given an object with state s, create an object with state t; transform s into t.
p <- q / \ s. p is true if q is true and

s is an object.
to solve p, solve q and create a
object with state s.

s <- q / \ t. s is an object if q is true and
t is an object.

s can be transformed into t if q is
solvent.

2040 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

Here, the counter object is a goal whose behaviour is defined
by a predicate and the first argument of the predicate-object is
a list of messages. The rules define the behaviour of a goal-
object according to the received messages. All of this happens
in a competing language. One of the main problems is sharing
an object between portions of the program that want to use it.
The linearization of the operations is done by order of the
messages rather than by that of the versions. In Shapiro and
Takeuchi's approach, everything happens in a competing and
deterministic logic programming language (Concurrent Prolog)
that no longer assumes the important properties of logic
programming as completeness. The introduction of
determinism is often justified by a gain in efficiency of
execution. Vulcan [Kahn 86a, 87], Mandala [Furukawa 84;
Ohki 87, 88] and Polka [Davison 88, 89b, 91] are three
languages in the same lineage. Since Concurrent Prolog
communication management is problematic, Vulcan suggests
using a pre-processor to automatically handle and polish the
language syntax at the same time. Mandala is a language based
on the KL1 language developed as part of the fifth generation
project in Japan. Polka offers a syntax built over Parlog [Clark
86, 87], a programming language in parallel logic similar to
Concurrent Prolog and which facilitates the writing of
programming by objects.

LO [Andreoli 89, 90a, 90b, 90c, 91, 92] is another framework
for amalgamating the paradigms of logic programming and
object-based programming and which also represents an object
by a predicate-process and the state of an object by the
arguments of a process. Thus, as in the schema of Shapiro and
Takeuchy, the dynamic behaviour of objects is then expressed,
linearly, in terms of the search tree. The theoretical foundation
of Linear Objects is Girard's linear logic [Girard 87, 89], a
logic introduced to provide a theoretical basis for the study of
competition. A major advantage of LO is to have a well
defined logic as theoretical support. It thus preserves the
declarative writing of logic programming. As an example,
consider the class of points in the plane, with both slots x
(abscissa) and y (ordinate). One possible instance of this class
is (3,5). In the program below, the trans (Dx, Dy) and projx
methods modify the state of a point by creating a new process
with new parameters that define the new state of the object.

point @ [trans(Dx,Dy) | S] @ x(X) @ y(Y)
`New_X is X + Dx, New_Y is Y + Dy
<- point @ S @ x(New_X) @ y(New_Y).

point @ [projx | S] @ x(X) @ y(Y)
<- point @ S @ x(X) @ y(0).

In the first, the state of the object goes from (X, Y) to (X + Dx,
Y + Dy). In the communication stream S, the first message,
that is to say the one that comes immediately after trans (Dx,
Dy), will be processed in the new state (X + Dx, Y + Dy) of the
object. The messages are processed linearly according to their
order of appearance in the communication flow of the object.
The main objections to this approach are often:

 Syntactic verbosity as in the first approach.
 The difficulty of managing the communications and in

particular to share the same object between several
portions of the program.

 It should also be noted that all this happens in a
language that is parallel and programming in parallel
logic such as that of Concurrent Prolog no longer

provides important properties of logic programming as
completeness1.

Modeling based on logic rules

This approach consists in seeing an object as a base of rules
and in representing its state by the set of rules present in this. It
allows us to retain the unification of data and procedures
specific to logic programming where the rules and facts use the
same representation. It has the advantage of addressing the
elements handled directly by logic programming, the rules, and
not of interpreting them according to the concepts of object
programming. The object-rule approach also results from an
abstraction where the concept of the theory of logic is made to
correspond to the concept of an object. This analogy leads us
to consider a class as the description of a theory or meta-theory
and a metaclass as a meta-meta-theory (Malenfant 90b).
Several languages are based on this approach: POL [Gallaire
86], ObjVProlog [Malenfant 89a, 89b, 89c, 89d, 90a, 90b, 91,
92], Prolog ++ [Moss 90, 94] [LPA 2017], etc. In this mode of
representation, an object can be seen as a theory and the
change of state as the modification of this theory [Malenfant
90b]. This brings us back to the problem of the semantics of a
theory whose assertions can be modified during deduction.
Indeed, if an object is to be seen as a logical theory, what
meaning can be given to the changes of this theory? If we
admit the modification of a theory during deduction, we are
confronted with the problem of the semantics of a theory
whose assertions can be modified during deduction. On the
other hand, the dynamic addition and removal of clauses in the
database raises the problem of the consistency of updates and
the change in the quantification of logical variables. Languages
such as Prolog / KR [Nakashima 84], Object-Prolog [Doma
86], Scoop [Vaucher 88], Prolog ++ [Moss 90, 94] [LPA
2017], use the Prolog assert and retract or similar predicates
(eg a record example in Delphia-Prolog) whose semantics are
imperative. The languages that use them suffer from the same
problems of semantic order and coherence. These predicates
are often preferred for their computational efficiency.

In the absence of a logical semantics, [Malenfant 90b] adopts
an operational approach consisting, according to his own
words, to preserve the maximum of the logic of the Horn rules
and to define an operational semantics of the changes of state
of the objects which limit the effects on the semantics
declarative. In the "object version mechanism" it proposes for
the implementation of the ObjVProlog-V (ObjVProlog with
Versions) language [Malenfant 90b], the object versions
subdivide an object into a sequence of rule bases. A resolution
context is then a triplet (<object>, <version>, <class>), where
<version> and <class> respectively indicate the rule base in the
sequence that forms the object and the level in this base rules.
Four rules then make it possible to determine in which version
a goal must be solved [Malenfant 90b]. According to this
approach, an object is built of a sequence of versions that
represent the history of state changes for that object since its
creation. Thus, when a change is executed, conceptually, a new
copy of its rule base is made. A message to an object is
normally fully resolved in the context of the latest version of

1
 In logic programming, completeness is the property of finding all solutions to

a given query. Prolog offers completeness in many cases, but poses some
problems [Sterling 90]. In Concurrent Prolog, not only are not all the solutions
found, by its operative semantics it can happen that a request fails even if a
solution exists according to the program.

2041 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

the object in this rule base when the object begins to resolve it.
Contrary to the approach we advocate, ObjVProlog-V's object
versioning mechanism is a mechanism that seeks to separate as
much as possible the backtracking, to find solutions to a
message, the classic behavior associated with the change of
state of the objects. As a result, the state change is seen as a
behavior that is not related to backtracking. [Malenfant 90b]
justifies this choice by the fact that the change of state for the
objects usually implies a progression in time which is badly
related to the backtracking.

Modeling based on intentional variables

Chen and Warren [Chen 88a] have addressed the problem of
logical programming assignment by proposing to use
Montague's intentional logic as a semantic basis for changing
values of variables. Intentional variables are modelled as a
sequence of values in each state, and during deduction, goals
are solved in a given state as long as there is no change of
state. The deduction procedure with intentional variables
makes and breaks the state changes in synchronization with the
backtracking. This approach has a clear semantics in
intentional logic. It should serve as a well-defined semantic
alternative to imperative variables.

vide(IP) :- IP :: [].
top(IP, X) :- IP :: [X | _].
stacking(IP, X) ::= IP :: Stacke, IP := [X | Stacke].
unstacking(IP) ::= IP :: [_ | Stacke], IP := Stacke.

As the example above shows, there are two types of predicates:

 Static predicates, defined by static rules introduced by
the ": -" operator; and dynamic predicates, defined by
dynamic rules introduced by the ":: =" operator.

The interpretation is as follows. A static rule is identical to a
Horn rule except that it may contain access to the value of an
intentional variable, represented here by the operator "::"/2. A
dynamic rule allows you to modify an intentional variable
using the operator ":"/2.

SWI-Prolog approach for web semantic

The Web (semantics) is one of the most promising areas of
application for SWI-Prolog. Prolog manages the natural RDF
semantic web model, where RDF provides a stable model for
representing knowledge with shared semantics. It turns out that
Prolog is also quite capable of providing web services (HTTP),
especially where it comes to dynamic generation of HTML
pages and providing data for JavaScript in web applications by
using serialization JSON. This is an imperative approach that
does not respect the declarative semantics of logic
programming.

Other approaches

LOO [Mancarella 195] is an object-oriented language in logic
programming. The Loo language combines object-oriented
programming with logic programming. Authors define model
classes as sets of clauses that represent their methods. An
object is an instance of a class and is identified by a unique
name. They use a set of operators on theories of manipulation
of state changes and for the inheritance of modelling. The
authors remain very vague and give no details on the

modelling and implementation of these mechanisms. A
message sent to an object results in an objective that is
resolved relative to a dynamic composition of clauses
representing its class and its current state. The challenge is to
avoid superimposing a complex syntactic and semantic
structure over the simple structure of logical programming.
The authors say they have tried to extend logical programming
in a conservative way, as much as possible, in order to
maintain simple and clear semantics.

Comparison of approaches

This multitude of approaches shows the wealth of logic
programming that offers several formalisms of representation.
With the exception of models based on imperative variables,
all the others manipulate elements of logic programming
(logical term, predicate, logical rules, etc.). However, their
level of granulity differs. In the logic-based approach, one
essentially seeks to interpret the elements of logical
programming in terms of object-oriented programming. By
confining itself to interpreting terms as objects, some
advantages of logical programming can be made to object-
based programming, but relatively little is made of logical
programming [Malenfant 90b]. Clauses and predicates
completely change perspective on terms. In fact, it changes the
way data structures and terms are handled, much like a typing
system does. The clauses are at a level of granularity where
one is not interested directly in the terms that are manipulated
by rules, but in the sets of clauses seen as largely autonomous
bases of knowledge, behaving like logical programs. However,
if the programming with the clauses of Horn has a clear
semantics, this representation mode poses the problem of
updating the base of clauses during the resolution (change of
quantification of the variables, coherence of the updates, etc.).
Approaches based on logical terms, literals and perpetual
processes do not experience the same semantic problem as
rule-based approaches. The defects noted come rather from the
non respect of certain characteristics of the programming by
objects. Approaches based on logical terms, literals and
processes generally suffer from syntactic verbosity. In these
approaches, the objects are devoid of identifier and are
identified by their structure.

We also note that in these approaches, the distinction between
classes and instances is not as clear as in conventional object
languages. In some of these approaches (Logical objects of
Conery, objects in Concurrent Prolog, LO, etc.), a class exists
only by its methods. These approaches, however, offer
advantages in terms of unification and have clear logical
semantics. In particular, they provide a solution to the problem
of changing the quantization of logical variables since, during
the resolution, all the actions on the objects are performed in
an existential environment. In Vulcan, SCOOP, 'Objects as
Intensions', ObjVProlog, the atom that represents the object
identifier is generated by the system to ensure its uniqueness.
After having reviewed the main existing approaches in logic
programming to model the state and the change of state, we
note, despite the multitude of proposed solutions, the difficulty
of establishing state changes of objects on a semantic logic and
effective implementation mechanisms. The search for a logical
framework for the semantics of state changes of logical objects
and that of implementation mechanisms remains, from this
point of view, a very open subject in that, the answer to all the
considerations , theoretical and pragmatic, which constrain the
definition of a programming language in logic and object-

2042 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

oriented is not easy. In the next section, we describe our
approach to modelling state and state change in logic
programming. Our approach takes into account both
declarative semantics and the effectiveness of implementation
mechanisms.

The logic object version mechanism of the OO-PROLOG
language

Classically, the change of state of an object implies a
progression in time (linear time) which is badly related to the
backtracking. Consequently, the change of state is seen as a
behaviour that is not linked to the backtracking. As we said
before, the image of time is here that used in Newtonian
physics. Time is a one-dimensional linear continuum. The
mechanism we propose is based on the unification mechanism,
as a matching tool, and on the backtrack. Our goal is to have
dynamic objects that can be built by unification and undone by
backtracking. In order to avoid edge effects, we propose to
manage objects in a temporary existential environment. This
facilitates the links between variables. An immediate
consequence is that during the deduction, the quantification of
the variables involved does not change. An object can be
partially instantiated. In other words, its state can contain
variables that can be instantiated later. In an edge effects
programming style, the focus is on a global environment. In
the OO-Prolog [Ngomo 96] language, this global environment
is erased by considering it as an additional parameter of each
method which calculates, in addition to the normally expected
result, a new environment. Objects are handled through this
environment. A state of this environment represents an aspect
of the universe at a given point in the time of deduction. In the
OO-Prolog language, an object is characterized by its history
and behaviour [Lieberman 86]: the future is represented by the
set of free variables (anything can happen), the past is
instantiated (it's too late) . During the deduction the objects are
built by unification and defeated by backtracking. As the
resolution time goes back when looking for new branches
leading to new solutions, this is translated operationally by the
restoration of the previous states when there is backtracking.

Internal representation of an object

In the OO-Prolog language, objects can be statically declared
in a program, but dynamically manipulated via an existential,
temporary and scalable environment. An object environment is
represented by an incomplete structure2 shared by all objects.
This environment is a common knowledge base for objects. It
has the following form: ENV = [next(PtrObject),...,
clock([0|NextDate]),date(0),Id1:E1,Id2:E2,...,Idn:En].

We are talking here about a dynamic environment open to
changes of state. Otherwise, the environment may be static or

2
 An incomplete structure is a Prolog term that has at least one

[Sterling 90] variable. Incomplete structures are well suited to
represent dynamic situations. At each operation the free variable will
be linked according to the operation and a new free variable will be
added. Declarative reading of programs using these structures is
immediate. Operationally, these programs are understood in terms of
constructing an incremental structure, where the "hole" for the
additional results is explicitly designated [Sterling 90]. The overview
of an incomplete structure can be used to allow the entry of new
information and thus to predict the future. An incomplete data
structure therefore reflects the intuition we have of the object concept.

closed, with no possibility of state changes. This is then
expressed as follows:

ENV = [next(closed),..., clock([0]),date(0), Id1:E1,Id2:

E2,...,Idn:En].

This type of environment is used in particular for representing
static knowledge (static programs) and solving problems by
simply querying the knowledge base. In this representation,
each state of the environment has a date corresponding to its
date of creation, date (Date) of state changes. This is then
expressed as follows: Id1:E1, Id2:E2, ..., Idn:En are objects

present in the environment. The PtrObject parameter is a
pointer to the object that will be created later. Each
environment of objects is provided with a clock that contains
the different moments of the evolution of the environment. The
instantiated part of this environment represents the past state of
the base while its uninstantiated part represents its future state,
which may contain future modifications. Each Ei is also
represented by an incomplete structure of the form:

Ei = [next(NextState), status(_), date(0), att1 := val1,..., atti :=
vali,..., attn := valn]

where NextState is a pointer to the future state of the object.
The "status" attribute is used to define the status of the object.
When associated with an uninstantiated variable, "status (_)",
the object is active. To give an object an inactive status it is
enough to instantiate this variable in the following way "status
(off)".

Status changes are made and defeated in sync with Prolog's
backtrack. It is therefore possible to return, by backtracking,
the previous states of an object or the environment of objects.
The universe of objects is formed by a series of layers ordered
in time that each reflect an aspect of the universe at a given
moment. Each layer only stores the information that
differentiates it from the previous layer. Each object retains its
history by memorizing the changes made from its creation to
the present moment. By default, as in the approach of
"intentional objects" [Chen 88a], the most recent version hides
the old ones ("non-monotonicity").

Update Operations

The universe of objects is formed of a series of layers that each
reflect an aspect of it at a given moment. The layers are
ordered in time (resolution time), each memorizing only the
information that differentiates it from the previous layer. There
is no duplication of data. A user can operate on the most recent
layer (including the previous ones), or on an earlier layer, by
explicit designation. The universe of objects is represented by
an incomplete structure that contains its different layers. Each
object retains its history by memorizing the changes it has
undergone since its creation until now. In imperative object
languages such as C++, Java, etc., only the last state is usually
retained, and the computer variables associated with the
attributes of the instance are assigned during the lifetime of the
object, without any possibility. back on the previous states of
this object. In the OO-Prolog language, an object is
characterized by its history and behaviour. Although the entire
history of an object is available, you can access by default only
the last state, that is to say the most recent, as in the example
below.

2043 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

?-...., P <- (setval(x(_),5), setval(x(_),10), getval(x(_),X)).
{...,X = 10}

Each change made during the deduction is automatically
defeated by backtracking. As the resolution time goes back
when looking for new branches leading to new solutions, this
is translated operationally into OO-Prolog by the restoration of
the previous states when there is backtracking. Time then has a
tree structure.

?-....,P <- (setval(x(_),5),(setval(x(_),10);setval(x(_),
20)),getval(x(_),X).

{..., X = 10}
{..., X = 20}

In order to allow access to any version of an object, each
version is completely characterized by its creation time.
Implantation is done using a temporal mechanism. A global
time clock for creating versions is initialized to zero at the
beginning of the deduction. It is incremented by one unit at
each change and decremented during a "backtracking".

?-....,P <- (setval(x(_),5,T1),

(setval(x(_),10,T2);setval(x(_),20,T2)),getval(x(_),X,T1),
getval(x(_),Y,T2)).

{..., T1 = ..., T2 = ..., X = 5, Y = 10}
{..., T1 = ..., T2 = ..., X = 5, Y = 20}

We see in this example that the value of the abscissa of P is 5
at time T1 and 10 or 20 at time T2. Time is manipulated here
explicitly.

Dynamic creation of an Idn+1 object consists in adding the Idn

+ 1 object in the uninstantiated part of the object environment.
Suppose that ENV = [next(F), clock([0|_]),...,date(0), Id1:E1,

Id2:E2,...,Idn:En] is the state of the environment before

creating the Idn+1 object. So after creating this object, ENV

becomes:

ENV = [next([next(F’),date(1),Idn+1:En+1]), clock([0,1|_]),

date(0),Id1:E1,...,Idn:En].

with En+1 = [next(_),date(1),...]. It's as if all other objects have

been duplicated. However, we can see that there is no
redundancy. This creation is carried out by the methods
newObject (O, E) (formerly denoted new) and newCObject (O,
E) (formerly denoted create) whose effect is to create the
object O with the state E. The newCObject method (O, E) has
the effect of automatically creating and classifying the newly
created object.

Example:

?- #’Point’ <- newObject(P,[]), P <- display.
TERMINAL :: < #[#'Point', 5] >
class(#'Object') <- #Point
x(#'Point') <- 0
y(#'Point') <- 0
{P = #[#'Point', 5]}

Assigning a value to an attribute

The assignment operation is to give a value to an attribute. In
the OO-Prolog language, this operation is reversible because it
is possible to return, by backspace, on the previous states of an
object. When an attribute Att, having the value Val, receives a
new value NVal, instead of overwriting the old value, as in the
imperative approach of the programming, one saves the new
value in the uninstantiated part of the structure representing the
state of the object. Let's illustrate this procedure with a simple
example. Consider the state of a point on the plane P at time 0.
E = [next(X), statut(_), date(0), class(#’Object’) := #’Point’,
x(#’Point’) := 1, y(#’Point’) := 2]

After assigning the value 3 to the attribute x (# 'Point') of P, E
is modified as follows:

E = [next([next(X’), date(1),x(#’Point’) := 3]), statut(_),
date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1,
y(#’Point’) := 2].

After performing this operation, we obtain another state of the
object P corresponding to the date date (1). The assignment is
performed by the setval (Att, Val), setval (Att, Val, Date),
setvalc (Att, Val), setvalc (Att, Val, Date) methods that take an
attribute and a value as input. possibly returns the date
corresponding to the creation of a new state of the modified
object. The only difference between setval and setvalc
(formerly setv) is that the application of setvalc to an object is
followed by an automatic classification of that object. In both
cases, there is control of the type of the value Val passed as
argument of the method. With the initial state of our
environment above, we have:

?- P <- setval(x(I),3,Date).

{P= #[#'Point',1], I = #'Point', Date = 1}

and of course we can also have, as in Prolog
?- P <- setval(x(_),3,1).
{}

which leads to a success.
There are four methods to access the value of an attribute:
getval(Att,Val), getval(Att,Val,Date), getv(Att,Val),
getv(Att,Val,Date)

Example

?- P <- (setval(x(_),3,Date), getval(x(_),X,0), getval(y(_),Y)).
{P= #[#'Point',1], X = 1, Y = 2}
?- P <- (setval(x(_),3,Date), getv(x(_),X,Date)).
{P= #[#'Point',1], Date = 1, X = 1}
{P= #[#'Point',1], Date = 1, X = 3}

As in Prolog, access operations to the value of an attribute can
be used to assign, unification, a value to an attribute, if the
initial value of the attribute at the given time is a free variable.
?- ..., P <- (setval(x(_),Val), getval(x(_),3)).
{..., P= #[#'Point',1], Val = 3}

Deleting a value from an attribute

The operation of deleting a value to an attribute is defined as
the assignment of a variable not instantiated to this attribute.
This makes it possible to cancel the previous value on the same

2044 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

date and thus define a future for this variable. The attribute can
thus be considered as having no value yet.

Rules for optimizing the global clock management process

In order to optimize the management of global clock changes
and dates, we have introduced the following rules:

 The global clock can be incremented only when a
change of state affects that concerns a variable already
instantiated;

 The incrementation of the dates can take place only
during a change of value of an already affected variable.

 In other cases, the global clock remains stable and
undergoes no change.

Let's illustrate these rules with a simple example. Consider
once more the state of a point on the plane P at time t = 0.
E = [next(X), statut(_), date(0), class(#’Object’) := #’Point’,
x(#’Point’) := 1]

After assigning the value 3 to the attribute x (# 'Point') of P, E
is modified as follows:

E = [next([next(X’), date(1),x(#’Point’) := 3]), statut(_),
date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1].

Consider now the assignment of the value 2 to the attribute y
(# 'Point') of P. E is then modified as follows:

E = [next([next(next([next(X’’), date(1),y(#’Point’) := 2])),
date(1),x(#’Point’) := 3]), statut(_), date(0), class(#’Object’)
:= #’Point’, x(#’Point’) := 1].

This time, the clock does not change, so the change only
affects an attribute that was not instantiated on the current date.
This same behavior is preserved when the change is on an
earlier date. Thus, assigning the value 5 to the x (# 'Point')
attribute of P on date 0 will not change the global clock as
shown in the code below. The environment E is then modified
as follows:

E = [next([next(next([next(next([next(X’’’), date(1),
x(#’Point’) := 2])), date(1),y(#’Point’) := 2])),
date(1),x(#’Point’) := 3]), status(_), date(0), class(#’Object’)
:= #’Point’, x(#’Point’) := 1].

Since the x attribute was not yet assigned to date 1, the state
change made does not change the global clock.

Implantation

The version mechanism described above is also the one used in
the ObjTL language (a prototype whose various extensions led
to the realization of the OO-Prolog language) [Ngomo 95a,
95b, 95c]. However, in ObjTL the object environment appears
explicitly both in the signature of a method and in the protocol
of a message sending:

Definition of a method

<class> << Env >> <selector>(<arg1>,...,<argn>) :- <body>.

Sending message
<object> << Env <- <message> sends goal B to object
<object>, the search for the method begins at its instantiation
class.

 <object> as <class> << Env <- <message> sends the
goal <message> to the object <object>, the search for
the method begins at the class <class>.

 <object> << Env <- <message> sends goal B to object
<object>, the search for the method starts at its
instantiation class and the search strategy is a
linearization.

 <object> as <class> << Env <- <message> sends the
goal <message> to the object <object>, the search for
the method starts at the level of the class <class> and
the search strategy is a linearization.

The explicit use of the object environment by the user can be a
source of problems:

 A rather heavy syntax compared to the conventional
syntax;

 There is probably a risk of the user manipulating the
object environment directly without going through the
appropriate methods.

It therefore seemed useful to polish this syntax by relieving the
user of the management of this environment. This allows for a
simpler syntax that is closer to conventional syntax.

 Definition of a method: The form of the object clauses
becomes:

 <class> :: <selector>arg1>,...,<argn>) :- <body>.

 Sending message: a message sending in one of the
following forms:

 <object> <- <message> sends goal B to object
<object>, the search for the method starts at its
instantiation class.

 <object> <- (<class>: <message>) sends the goal
<message> to the object <object>, the search for the
method starts at the level of the class <class>.

 <object> <- <message> sends goal B to object
<object>, the search for the method starts at its
instantiation class and the search strategy is a
linearization.

 <object> <- (<class>: <message>) sends the goal
<message> to the object <object>, the search for the
method starts at the level of the class <class> and the
search strategy is a linearization.

Example: For the class of the points of the plane we will be
able to define the method of access to the value of the attribute
x (#'Point') as follows:

#’Point’ :: getx(X) :- self <- getval(x(#’Point’),X).
A query can then be:
?- #’Point’ <- newObject(P,[x(_):=2,y(_):=3]),P <- getx(X).

This result is obtained by meta-interpretation. Let A be the
query to be reduced. Query A can contain standard Prolog
literals or object-literals (sending messages). Among classical
literals, we will distinguish those associated with system
predicates and others. They will be solved by the interpreter
Prolog. Similarly, object literals associated with the basic
methods will be treated differently. They will be solved by a
low level interpreter.

2045 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

The formal unification of Prolog terms

The heart of the computational model of logic programs is the
unification algorithm. Unification makes it possible to
determine, if it exists, the common instance of two terms.
Unification is at the root of most automatic deduction work
and the use of logical inference in artificial intelligence. A
term t is a common instance of two terms t1 and t2 if there are
substitutions 1 and 2 such that t equals 1t1 and equal to
2t2. A term s is more general than a term t if t is an instance
of s, but s is not an instance of t. A term s is an alphabetical
variant of a term t if both s is an instance of t and t is an
instance of s. A two-term unifier is a substitution that makes
the terms identical. If two terms have a unifying unit, we will
say that they unite. There is a close relationship between
unifiers and common instances. Any unifier determines a
common instance, and conversely any common instance
determines a unifier. A more general unifier or "upg" of two
terms is a unifier such that the associated common instance is
the most general one. If two terms unite then there is a single
more general unifier. This uniqueness is to "rename" variables
closely. Equivalently, two univariate terms have a single most
general common instance, an alphabetic variant.

A unification algorithm calculates the most general unifier of
two terms, if any, and displays "failure" otherwise. The
algorithm for unification presented below is based on the
solution of equations. The input for the algorithm consists of
two terms, T1 and T2. The output of the algorithm is the "upg"
of the two terms if they unify or "fail" if they do not unite. The
algorithm uses a stack to store the equations to solve and a
location  to group the substitution of the output. The vast
majority of Prolog systems do not use the classic unification
algorithm, deliberately choosing not to perform the occurrence
test (a variable can be unified to a term containing it). This
choice is not without problems at the theoretical level, since it
defies the model of the universe of Herbrand limited finite
terms [Herbrand 67]. At a more operational level, the
implementation without special precautions of such an
algorithm, ignoring the test of occurrence, makes it subject to
loops. Thus, unlike the original unification algorithm
[Robinson 65], a variable can be linked to a term containing it.
The main reason for this omission is a significant gain in
execution time. Indeed, performing the test of occurrence is an
expensive operation since for each substitution creation {(x,
t)}, it makes it necessary to go completely through the term t in
order to determine whether the variable x is or is not present in
t.

In OO-Prolog, an object has a unique identifier that
distinguishes objects. Two different objects can not have the
same identifier. In this case, the application of the Prolog
unification procedure to two OO-Prolog objects will always
result in a failure since two distinct identifiers can never be
unified. So we have to modify the classic procedure of Prolog
unification so that it takes into account the objects and the
inheritance relation. In order for the object layer to react
homogeneously with the rest of the Prolog language, it must
have mechanisms identical to those of all the types of data
present in Prolog. We propose to define a specific mechanism
to take into account the objects. In the case of objects, the use
of this primitive poses problems of names referencing the
objects. Two structurally unified objects can have different
identifiers. There is no valid justification for accepting a
success for the unification of different object names while the

unification of distinct functor terms fails even if all the other
elements composing the terms are identical [Cervoni 94]. As a
result, we are obliged to have specific operators for object
names. In OO-Prolog the name of an object is preceded by the
operator #: #<name>. For example "#'Point'" instead of 'Point'.
This notation distinguishes object names from other Prolog
terms.

Abstract Interpreter for OO-Prolog Programs

The abstract interpreter for OO-Prolog programs is an
extension of the Prolog interpreter to logical objects. This
interpreter is a modification of the abstract interpreter for
Prolog [Sterling 90] programs. It gives the solution of a
question G relating to a program P. The output of the
interpreter is an instance of G, if a demonstration of such an
instance is found, or "failure" if there was failure during of the
calculation. If non-object literals are reduced in the traditional
way, reducing object literals requires additional processing to
accommodate inheritance. Thus, if the current goal is, for
example, of the form O <- M, then this literal can not be
unified with any clause in P. The processing consists of finding
the class of the object receiving the message, C, and browse
the subgraph of C to search for the definition class or classes of
method M. For each class found, there is a (renamed) clause C
:: M '<- B1, ..., Bn, n ≥ 0. Once such a clause is chosen, the
processing continues as in the classical case by replacing in the
resolvent the current goal by the body of the clause B1, ..., Bn.
Then, we apply not only to the resolvent and to G, but also to
E, an incomplete dynamic structure that undergoes unifications
during processing.

Unification Algorithm Extensions

The unification of two terms of the same class mainly consists
of recursively unifying the fields of the structures of the
instances. In the case of objects, two instances of the same
class are semantically univariable if and only if the values of
their respective attributes are uniformable in the sense of
Prolog or semantically uniformable. This definition does not
allow for example to unify a rectangle of length 4 and width 4
to a square of side 4, unless we use the classification
mechanism. It is still necessary that the user explicitly express
the classification constraints. If the instances are not of the
same class, it is necessary to search between them for a
possible inheritance relation which would allow to unify them,
by specialization or by generalization. Extensions to the
algorithm presented previously are described in [Ngomo 96].
We do not describe them in this article that focuses on the
dynamic nature of objects.

Unification Algorithm Extensions

The unification of two terms of the same class mainly consists
of recursively unifying the fields of the structures of the
instances. In the case of objects, two instances of the same
class are semantically univariable if and only if the values of
their respective attributes are uniformable in the sense of
Prolog or semantically uniformable. This definition does not
allow for example to unify a rectangle R = (length: 4, width: 4)
to a square C of side equal to 4, unless we use the classification
mechanism. It is still necessary that the user explicitly express
the classification constraints. If the instances are not of the
same class, it is necessary to search between them for a
possible inheritance relation which would allow to unify them,

2046 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

by specialization or by generalization. Extensions to the
algorithm presented previously are described in [Ngomo 96].
We do not describe them in this paper that focuses on the
dynamic nature of objects.

Some properties of the model

A simple syntax

The OO-Prolog language has a simple syntax similar to that of
conventional object languages.

Changing the quantification of variables

In OO-Prolog, the problem of changing the quantization of
logical variables is solved by using existential environments, in
which all variables are quantized existentially. Thus, the
following queries
?- #’Point’ <- new(P,[]), P <- setval(x(_),X,D), X = 5, P <-
getval(x(_),Y).
?- #’Point’ <- new(P,[]), X = 5, P <- (setval(x(_),X,D),
getval(x(_),Y)).
both lead to the same result: {..., X = 5, Y = 5}.

Consistency of updates

The approach presented here allows you to manage updates
consistently. In contrast to imperative languages that use
Prolog's "assert" and "retract" predicates (such as Prolog++
[Moss 86, 90, 94] [LPA 2017]) or that implement imperative
variables (such as ESP [Chikayama 83, 84]), changes in OO-
Prolog are made and undone in synchronization with the
backtracking. This concerns all creation, modification and
deletion operations. We can then have:

? #’Point’ <- new(P,[]), P <- ((setval(x(_),2,D) ;
setval(x(_),5,D)), getval(x(_),Val),delete(x(_)).
{..., D = 1, Val =2}
{..., D = 1, Val =5}

Formal significance of updates

During the evolution of the universe of objects, each state or
layer corresponds to a given moment. Let E be the set of these
states and Rp be the temporal precedence relation between two

states of the universe E: << for all et and et' comparable

elements of E (t and t' being two points of the resolution time,
et and et’ are respectively the state of the universe at time t and

at time t'), then: (et Rp et’) or (et = et’) or (et Rp et’) >>. In

this case, if et Rp et’, then et’ inherits somehow from et. Since

the resolution time is arborescent, the relation Rp is a partial

order relation since we can not necessarily compare two
elements of E. Our temporal model M is then composed of the
set E, the binary relation Rp on E and a function I: E x

{Formulas of language} {1 , 0} which associates to each
formula of language its values of truth to the different possible
states of the universe. The interpretation of a formula is then
done relative to a given state of the universe of objects,
considering an interpretation as a couple (M, e). If ei is a
version before ej then ej somehow inherit ei. Each copy
generated contains locally only the information that
differentiates it from its generator. The rest is somehow

inherited. The information is stored in this structure without
redundancy. The model of time is here an "finitary infinite"
tree, that is to say a tree whose each node admits a non-zero
finite number of successors. The sequence corresponds to the
particular case where this number is worth the unit. In a strictly
temporal interpretation, the sequence of situations represents
the evolution of the state of the world over time.

Conclusion and perspectives

State and state change modeling of an object is a central
problem in object-based logic programming. This article
presents an in-depth discussion of existing approaches. He then
proposes a new mechanism for object versions. This
mechanism is based on the unification and use of incomplete
structures that are inherently dynamic and thus represent the
dynamic aspects of logical objects. He uses unification as a
matching tool. As a result, the state changes are made and
undone in synchronization with the backtracking. An object is
then characterized by its behavior and its history. The set of
states is the set of versions of an object. These versions are
ordered according to a partial order which expresses the
successive derivations of a version, and one speaks about tree
of versions. One of the problems often encountered in
versioning models is the consistency of the versions between
them and its maintenance through consistent configurations.
The versioning mechanism of the OO-Prolog language offers
several advantages, both theoretically and practically:

 Compared to imperative approaches that introduce edge
effects programming, it has the advantage of having a
declarative, clear and coherent semantics;

 The changes are expressed in terms of a search tree, that
is to say a dynamic structure of logic programming;

 The deletion of a value at an attribute on a given date
from the global clock corresponding to the assignment
of a variable to this attribute, which opens an evolution
perspective to this attribute (a future);

 Thanks to the use of an existential environment with an
always available future, it facilitates the links between
variables; which brings a solution to the problem of
changing the quantification of variables;

 In relation to the interaction between version
management, the identity of an object and the type of an
object, OO-Prolog adopts a dynamic solution. An object
O can reference an object O '. If the O object has
multiple versions, the reference is dynamic and
interpreted when the program runs. A dynamic
reference can be considered as a query on all versions.

Our work continues in optimizing the implementation
techniques of the proposed mechanism. The objects being
manipulated in the dynamic space, this can quickly lead to a
saturation of the batteries of this space. It is then necessary to
limit as much as possible the write accesses in this
environment which, with respect to the code zone, is much
more limited. This is not a pressing need, given the current
power of computers and their storage capacity. We simply
want to increase the performance of our language. Our work
also focuses on the design of a multi-tier architecture and
service-oriented database query interface in OO-Prolog, with
applications in several domains. Another avenue explored is
the design of a service platform around the OO-Prolog
language: interrogation service, resolution service, exchange
service with other languages, etc.

2047 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

REFERENCES

[Aït-Kaci 86] Aït-Kaci, H. & Nasr, R. "LOGIN: A Logic

Programming Langage with Built-in Inheritance". J. of
Logic Programming 3, 3 (Oct. 1986), pp. 185-215.

[Aït-Kaci 88] Ait-Kaci, H. & Lincoln, P. "LIFE, A Natural
Language for Natural Language". MCC Technical Report
Number ACA-ST-O74-88, Austin, Feb. 1988.

[Aït-Kaci 89a] H. Aït-Kaci, "LIFE an overview", Presentation
au Groupe AFCET-Prolog, 1989.

[Aït-Kaci 89b] Aït-Kaci, H. and Nasr, R., P. Lincon and D.
Plum, "LIFE an overview", DEC Paris Research
Laboratory, 1989.

[Aït-Kaci 91] Ait-Kaci, H. & Podelski, A. "Towards a
Meaning of LIFE". Proc. of the Thirsd Int'l Conf. on
Programming Language Implementation and Logic
Programming, Lectures Notes in Comp. Sciences, Passaü,
Aug. 1991.

[Aït-Kaci 93] Ait-Kaci, H. & Podelski, A. "Towards a
Meaning of LIFE". Journal of Logic Programming, 16:195-
234, 1993.

[Alexiev 93] V. Alexiev. "Mutable Object State for Object-
Oriented Logic Programming : A Survey". Technical
Report TR 93-15, Dept. of Comp. Science, Univ. of
Alberta, 16 Aug. 1993.

[Andréoli 89] Andréoli, J-M. & Pareschi, R. "Logic
programming with sequent systems : A linear logic
approach". In P. Schroeder-Heister, editor, Intl. Workshop
on Extensions of Logic Programming, number 475 in
LNAI, pages 1-30, Tübingen, Germany, 1989.

[Andréoli 90a] Andréoli, J-M. & Pareschi, R. "Linear Objects:
Logical Processes with Built-in Inheritance". In 9th Conf.
on Logic Programming, Jérusalem, Israel, 1990.

[Andréoli 90b] Andréoli, J-M. & Pareschi, R. "Linear objects:
Logical processes with built-in inheritance". In D. Warren
and P. Szeredi, editors, Intl. Conf. on Logic Programming
(ICLP'90), pages 495-510, Jerusalem, Israel, June 1990.
MIT Press.

[Andréoli 90c] Andréoli, J-M. & Pareschi, R. "LO and behold!
Concurrent Structured Processes". In ECOOPOOPSLA '90,
Ottawa, Ontario, 1990. (SIGPLAN Notices, 25(10):44-56,
Oct . 1990).

[Andréoli 91] Andréoli, A. & Pareschi, R. "Linear Objects:
Logical processes built-in inheritance". New Generation
Computing, 9(4):445-473, 1991.

[Andréoli 92] J.M.Andreoli, R.Pareschi, "Linear objects: A
logic framework for open system programming", In A.
Voronkov, editor, Inter. Conference on Logic Programming
and Automated Reasoning LPAR'92, pp 448-450,
St.Petersburg, Russia, July 1992.

[Bobrow 88a] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel,
S.E. Keene, G. Kiczales, & D.A. Moon. "Special Issue,
Common Lisp Object System Specification, X3J13
Document 88-002R". ACM SIGPLAN Notices, 23, Sep.
1988.

[Bobrow 88b] D.G. Bobrow, K. Kahn, G. Kiezales. "The
Common Lisp System Metaobject Kernel", A Status
Report. In Proc. of the 1st IWOLES, pages 27-32, Paris,
1988.

[Bonner 93] A. Bonner and M. Kifer, "Transaction logic
programming (or, a logic of procedural and declarative
knowledge). In Intl. conf. on Logic Programming
(ICLP'93), pp 257-279, Budapest, Hungary, 1993.

[Bonner 94a] A.J. Bonner and M. Kifer "A General Logic of
Stage Change". Technical Report, Computer Systems
Research Institute, University of Toronto, 1994.

[Bonner 95] A.J. Bonner and M. Kifer "Transaction Logic
Programming (or a logic of declarative and procedural
knowledge)". Technical Report CSRI-323, University of
Toronto, April 1995. ftp://csri.toronto.edu/csri-technical-
reports/323/report.ps.Z.

[Booch 92] G. Booch “Object Oriented Design with
applications” The Benjamin/Cummings Publishing
Company, Inc., Redwood City, California, 1992.

[Bouché 94] Bouché M., "La démarche objet. Concepts et
outils.", AFNOR, 1994.

[Bowen 85] Bowen, K.A. et Weinberg, T. A Meta-Level
Extension of Prolog, IEEE Inttl Symp. on Logic Prog. 'B5
(1985), pp.48-53.

[Brachman 85] Brachman R. J. and Schmolze J. G. "An
overview of the KL-ONE Knowledge representation
system",. Cognitive Science, 9(2):171-216, 1985.

[Cervoni 94] L. Cervoni “Méthodologies et Techniques de
résolution de Problèmes avec Contraintes. Application en
Programmation Logique avec Objets : CooXi.” Thèse de
Doctorat Nouveau Régime, Université de Rouen, juillet
1994.

[Chen 88] W. Chen and D. S. Warren. Objects as intensions. In
Logic Programming: Proc. 5th Int'l Conf. and Symp.,
Seattle, WA, USA, 15-19 Aug 1988, pages 404-19. The
MIT Press, Cambridge, MA, 1988.

[Chen 91] W. Chen. Declarative specification and evaluation
of database updates. In C. Delobel, M. Kifer, and Y.
Masunaga, editors, Deductive and Object-Oriented
Databases (DOOD'91), number 566 in LNCS, pages
147-166, Munich, Germany, Dec. 1991.

[Chikayama 83] Chikayama, T. "ESP-Extended Self-contained
Prolog-as a preliminary kernel language of Fifth
Generation computers. New Generation Computing, 1:11-
24, 1983.

[Chikayama 84] Chikayama, T. "Unique Features of ESP".
Proc. Int'l Conf. on Fifth Gen. Comp. Sys. (1984), pp. 292-
298.

[Clark 86] K.L. Clark and Gregory, "PARLOG : A parallel
Logic Programming Language", ACM Trans. on Language
and Systems 8, 1 (january 1986), 1-49.

[Clark 87] K.L. Clark and Gregory, "Parlog and Prolog
United", Proc. of the 4th Int. Conf. on Logic Programming,
Cambridge, Mass: MIT Press, pp. 927-961, 1987.

[Conery 87a] John S. Conery. "Hoops : an object-oriented
Prolog". Technical Report, University of Oregon, 1987.

[Conery 87b] John S. Conery. "Object-Oriented programming
with First-Order Predicate Calculus". Technical Report
CIS-TR-87-09, University of Oregon, Aug. 1987.

[Conery 88a] J. Conery. Logical Objects. Proc. of the Fifth Int'l
Conf. on Logic Prog. , p.p. '20-443, 1988.

[Conery 88b] John S. Conery. "Hoops - user's Manual."
Technical Report CIS - TR - 88 - 12 , Dept. Computer and
Information Science, University of Oregon, Eugene,
Oregon 1988.

[Davison 88] A. Davison. POLKA: a PARLOG
object-oriented language. Technical report, DOC, Imperial
College, London, 1988.

[Davison 89a] A. Davison. A survey of logic
programming-based object-oriented languages. Technical
Report 92/3, University of Melbourne, Jan. 1992. 4th
revision; first published April 1989.

2048 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

[Davison 89b] Andrew Davison. “Polka: A Parlog Object
Oriented Language”. PhD thesis, Imperial College, Dept. of
Computer Science, London, September 1989.

[Davison 91] A. Davison. From PARLOG to POLKA in two
easy steps. In J. Maluszynski and M. Wirsing, editors,
Third International Symposium on Programming Language
Implementation and Logic Programming, PLILP'91,
number 528 in LNCS, pages 171-182. Springer-Verlag,
1991.

[Davison 92] A. Davison. A survey of logic
programming-based object-oriented languages. In Object-
Based Concurrency (Wegner P., Yonezawa A. and Agha
G., eds.) Reading, Mass.: Addison-Wesley.

[Davison 93] Davison, A. "A Survey of Logic Programming-
based Object Oriented Languages". In Research Directions
in Concurrent Object-Oriented Programmaing. The MIT
Press, Cambridge, MA, 1993.

[Doma 86] Doma, A. "Object-Prolog: Dynamic Object-
Oriented Representation of Knowledge". SzKi Comp.
Research and Inn. Center (1986), 14 p.

[Doma 88] Doma, A. "Object-Prolog: Dynamic Object-
Oriented Representation of Knowledge". In T. Henson,
editor, SCS Multiconference on Artificial Intelligence and
Simulation : The Diversity of Applications, pages 83-88,
San Diego, CA, Feb. 1988.

[Fukunaga 86] K. Fukunaga and S. Hirose. An experience with
a Prolog-based object-oriented language. In N. Meyrowitz,
editor, OOPSLA'86: Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’86):
Conf. Proc., Portland, OR, USA, 29 Sep - 2 Oct 1986,
pages 224-231. 1986. (SIGPLAN Notices, 21(11)).

[Furukawa 84] K. Furukawa, A. Takeuchi, S. Kunifuji, H.
Yasukawa, M. Ohki, and K. Ueda. "Mandala : A logic
based knowledge programming system". In International
Conference on Fifth Generation Computer Systems, Tokyo,
Nov. 1984.

[Gallaire 86] Gallaire, H. "Merging Objects and Logic
Programming: Relational Semantics, Performance and
Standarization". In Proc. AAAI'86, pp.754-758,
Philadelphia, Pensylrania, 1986.

[Gandilhon 87] Gandilhon T. “Proposition d’une extension
objet minimale pour Prolog.”, Actes du séminaire de
Programmation en Logique, Trégastel (mai 1987), pp. 483-
506.

[Gandriau 88] Gandriau, M. "CIEL: classes et instances en
logique". Thèse de Doctorat, ENSEEIHT 1988, 151p.

[Girard 87] J.-Y. Girard. Linear logic. Theoretical Comput.
Sci., 50:1-102, 1987.

[Girard 89] J.-Y. Girard. “Introduction à la logique linéaire”,
in Logique et Informatique : une introduction, INRIA, B.
Courcelle ed., Paris 1989.

[Gloess 84] P.Y. Gloess, "Logis, un système Prolog dans un
environnement Lisp". Actes du séminaire de
programmation en logique. pages 213-222, Plestin les
Grèves. Avril 1984.

[Gloess 86] P.Y. Gloess, J. Marcovich. "OBLOGIS, a flexible
implementation of Prolog logic and its application to the
design of broaching expert system." First Int. Conf. on
Applications of A.I. in Engineering problems.
Southampton, pages 1-21. Avril 1986.

[Gloess 89a] P.Y. Gloess, "Prolog et Objets et Objets et
Prolog", Présentation groupe AFCET-PROLOG, Paris, Mai
1989.

[Gloess 89b] Gloess, P.Y. "ULog, Aspect Formels et Pratiques
d'un Interface entre Programmation Logique et Objets".

Actes du 8è Séminaire de Programmation en Logique, pp.
71-96, Mai 1989.

[Gloess 90] Gloess, P.Y. "Contribution à l'optimisation de
mécanisme de raisonnement dans des structures spécialiées
de représentation de connaissances". Thèse d'état, Univ. de
TechnWorldLogie de Compiègne, Janv. 1990.

[Gloess 91] Gloess, P.Y. “U-Log, A Unified Object Logic”,
Revue d’Intelligence Artificielle, Vol. 5, n° 2/1991, pp. 33-
66.

[Gloess 95] Gloess, P.Y. M. Oros, C.M. LI, “U-Log3 =
DataLog + Constraints”, (Prototype) Actes des JFPL95,
Dijon (France), pp. 369-372.

[Goldberg 83] Goldberg, A. and Robson, D. "Smalltalk-80 :
The language and its implementation". Addison-Wesley,
1983.

[Grant 90] J. Grant and T. K. Sellis. Extended database logic.
complex objects and deduction. Information Sciences,
52(1):85-110, Oct. 1990.

[Herbrand 67] J. Herbrand "Investigations in Proof Theory", in
From Frege to Gödel : A Source Book in Mathematical
Logic, 1879-1931, van Heijenoort, J. (ed.), Harvard
University Press, Cambridge, Mass. 1967, 525-581.

[Ishikawa 86a] Ishikawa, Y. et Tokoro, M. A Concurrent
Object Oriented Knowledge Representation Language
Orient84/K: Its Features and Implementation, Actes de
OOPSLA'86, ACM Sigplan Notices 21, 11 (Novembre
1986), pp. 232-241.

[Ishikawa 86b] Y. Ishikawa and M. Tokoro. ORIENT84/K: A
language with multiple paradigms in the object framework.
In Nineteenth Annual Hawaii Int. Conference on System
Sciences, volume II: Software Track, Honolulu, HI, Jan.
1986.

[Ishikawa 87] Ishikawa, Y. et Tokoro, M. Orient84/K: An
ObJect Orlented Concurrent Programming Language for
Knowledge Representation, Object-Oriented Concurrent
Programming (1987), W 159-198.

[Iwanaga 91] R. Iwanaga and O. Nakazawa. Development of
the object-oriented logic programming language CESP. Oki
Technical Review, 58(142):39-44, Nov. 1991.

[Jungclaus 93] R. Jungclaus. Logic-Based Modeling of
Dynamic Object Systems. PhD thesis, Technical University
Braunschweig, Germany, 1993.

[Kahn 86a] K. M. Kahn. VULCAN: Logical concurrent
objects. In E. S. Shapiro, editor, Concurrent PROLOG:
Collected Papers, volume 2, pages 274-303. MIT Press,
1986.

[Kahn 86b] Kahn, K., Tribble, E.D., Miller, M.S. & Bobrow,
D.G. "Objects in Concurrent Logic Programming
Languages". Actes de OOLPSA'86, ACM Sigplan Notices
21, 11 (1986), pp. 242-257.

[Kahn 87] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G.
Bobrow. VULCAN: Logical concurrent objects. In B.
Shriver and P. Wegner, editors, Research Directions in
Object-Oriented Programming, pages 75-112, Cambridge,
MA, 1987. MIT Press. (Also Chap. 30 in [Shapiro 87a])

[Khoshafian 86] S. Khoshafian, G. Copeland, “Object
Identity”, Sigplan Notices, n° 21, 1986.

[Kifer 95] M. Kifer, "Deductive and Object Data Languages :
A Quest for Integration",Keynote address at the 4-th Intl.
Conf. on Deductive and Object-Oriented Databases,
Singapore, December 1995 (Springer's LNCS 1013).

[Lieberman 86] H. Lieberman, "Using prototypical objects to
implement shared behaviour in object oriented systems". In
N. Meyrowitz ed. OOPSLA'86, pages 214-223. Portland,
september 1986.

2049 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

[Lindholm 87] T.G. Lindholm, R.A. O'Keefe, "Efficient
Implementation of a Defensible Semantics for Dynamic
Prolog Code", Actes 4th Int'l Conf. on Logic Prog., pp.21-
39, 1987.

[LPA 2017] Prolog++ toolkit, an expressive and powerful
object-oriented programming system, which combines the
best of AI and OOPs. LPA 2017.
http://www.lpa.co.uk/ppp.htm

[Machanda 88] Manchanda, S. & Warren, D.S. "A Logi-based
Language for Database Updates". Actes W. on Foun. of
Ded. Db. and Logic Programming, pp. 363-394, 1988.

[Malenfant 89a] Malenfant, J. ObjVProlog-V: un modèle
uniforme de métaclasses, classes et Instances adapté à la
programmation logique, Université de Montréal, Dép.
I.R.O., Pap. de Pech. 671 (Janvier 1989), 58 p.

[Malenfant 89b] J. Malenfant, G. Lapalme, and J. Vaucher.
OBJVPROLOG: Metaclasses in logic. In S. Cook, editor,
European Conference on Object-Oriented Programming
(ECOOP'89), pages 257-269, Nothingham, UK, July 1989.

[Malenfant 89c] Malenfant, J., Lapalme, G. et Vaucher, J.
ObjVProlog-D: Distributed Knowledge Processing using
Concurrent Objects, note pour la table ronde sur OOCP,
ECOOP'89 (juil. 1989),3 p.

[Malenfant 89d] Malenfant, J., Lapalme, G. et Vaucher, J.
Coherent State Changes for Logic Objects, soumis à J. of
Logic Programming (août 1989).

[Malenfant 90a] J. Malenfant, G. Lapalme, and J. Vaucher.
Metaclasses for metaprogramming in logic. In Second
International Symposium on Meta-Programming in Logic,
pages 257-271, Leuven, Belgium, Apr. 1990.

[Malenfant 90b] Malenfant, J. "Conception et Implantation
d'un langage de programmation intégrant trois paradigmes:
la programmation logique, la programmation par objets et
la programmation répartie". Thèse de PhD, Univ. de
Montréal, Mars 1990.

[Malenfant 91a] J. Malenfant, G. Lapalme, and J. Vaucher.
ObjVProlog-D: A reflexive object-oriented logic language
for distributed computing. OOPS Messenger, 2(2):78-81,
Apr. 1991.

[Malenfant 91b] J. Malenfant, G. Lapalme, and J. Vaucher.
Coherent state changes for logic programs. Research report
LITP 91-01 RXF, Équipe mixte LITP/RXF, Jan. 1991.

[Malenfant 92] Malenfant, J. "Architecture méta-réflexives en
programmation logique par objets". JFPL 92, pp. 253-267,
1992.

[Mancarella 95] P. Mancarella, A. Raffaetà, et F. Turini LOO:
Un langage orienté objet Programmation Logique . Actes
de 1995 conjointe GULP-PRODE Conférence sur la
programmation déclarative (MI Sessa et M. Alpuente
Frasnedo, eds), pp271-282, 1995.

[McCabe 92] F. G. McCabe. Logic & Objects. International
Series in Computer Science. Prentice-Hall, 1992.

[Meyer 87a] Meyer B. “Eiffel : Programming for reusability
and extendibility.”, ACM SIGPLAN Notices, 22(2):85-94,
1987.

[Meyer 87b] B. Meyer, “Reusability: The Case for
object-oriented Design”, IEEESoftware 4, 2 (Mars 1987),
pp.50-64.

[Meyer 88] B. Meyer. “Object-Oriented Softuare
Construction”. Prentice Hall, New York, 1988.

[Meyer 90] Meyer B. “Conception et programmation par
objets, pour le génie logiciel de qualité”, InterEditions,
Paris 1990.

[Misoguchi 84] F. Misoguchi, H. Owhada, and Y. Katayama.
"LOOKS: Knowledge representation system for designing

expert systems in logic programming framework". In
International Conference on Fifth Generation Computer
Systems, ICOT, Japan, 6-9 Nov 1984, pages 606-12.
North-Holland, Amsterdam, 1984.

[Miyoshi 84] H. Miyoshi and K. Furukawa. Object-oriented
parser in the logic programming language ESP. In Natural
Language Understanding and Logic Programming, First
International Workshop, pages 107119, Rennes, France,
Sept. 1984. North-Holland.

[Moss 86] Moss, C. CUT & PASTE - defining the Impure
Primitives of Prolog, Third Int7 Conf. on Logic Prog.
LNCS 225 (Juillet 1986), pp. 686-694.

[Moss 90] Moss C.. An introduction to Prolog++. Research
Report DOC 90/10, Imperial College, London, June 1990.

[Moss 94] Moss C., "Prolog++ : The Power of Object-Oriented
and Logic Programming", Addison-Wesley, 1994.

[Moteiro 89] Monteiro, L. et Porto, A. Contextual Logic Prog.,
Actes 6th Int7 Conf. on Logic Prog., Portugal (1989), pp.
284-299.

[Ngomo 95a] Ngomo M. , Pécuchet J-P. & Drissi-Talbi A.
"Une approche déclarative et non-déterministe de la
programmation logique par objets mutables". Actes des
4èmes Journées Francophones de Programmation Logique
et Journées d’étude Programmation par contraintes et
applications industrielles, Prototype JFPLC'95, pp.391-396,
Dijon, 1995, France.

[Ngomo 95b] Ngomo M. , Pécuchet J-P. & Drissi-Talbi A. "La
gestion de l'héritage multiple en ObjTL". RPO’95 dans les
Actes des 15èmes Journées Internationales IA’95, pp.261-
270, Montpellier 1995, France.

[Ngomo 95c] Ngomo M., Pécuchet J-P., Drissi-Talbi A.
"Intégration des paradigmes de programmation logique et
de programmation par objets : une approche déclarative et
non-déterministe". Actes du 2ème Congrès bienal de
l’Association Française des Sciences et Technologies de
l’Information et des Systèmes, AFCET - Technologie Objet
- 95, pp.85-94, Toulouse 1995, France.

[Ngomo 96] Ngomo M. "Intégration de la programmation
logique et de la programmation par objets : étude,
conception et implantation". Thèse de Doctorat
d’Informatique, Université - INSA de Rouen, Décembre
1996.

[Ohki 87] M. Ohki, A. Takeuchi, and K. Furukawa. "An
object-oriented programming language based on the
parallel logic programming language KL1". In J.-L. Lassez,
editor, Fourth International Conference on Logic
Programming, MIT Press Series in Logic Programming,
pages 894-909, 1987.

[Ohki 88] M. Ohki, A. Takeuchi and K. Furukawa, “An object-
oriented programming language based on the parallel logic
programming language KL1”. In Proc. FGCS’88, 895-909,
Tokyo: ICOT.

[Shapiro 83a] Shapiro, E., "A subset of Concurrent Prolog and
its Interpreter", Tech. Report TR-003, ICOT-Institute for
New Generation Computer Technology, Tokyo, Japan,
January, 1983.

[Shapiro 83b] Shapiro, E. and A. Takeuchi, "Object-Oriented
Programming in Concurrent Prolog", New Generation
Computing, 1:25-48, 1983. (Also Chap. 29 in [Shapiro
87]).

[Shapiro 86] Shapiro, E. "Concurrent Prolog : A progress
report". IEEE Computer 19, pp. 44-58, Aug. 1986. (Also
Chap. 5 in

[Shapiro 87] E. Shapiro, (Editor), "Concurrent Prolog", Vol. 1
and 2, MIT Press, 1987.

2050 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018

[Shapiro 89] E. Shapiro, "The familly of Concurrent logic
programming languages", Technical Report CS89-08,
Depart. of Applied Mathematics and Computer Science,
The Wietzmann Institute, Rehovot, 1989.

[SICStus Prolog,2017] SICStus Prolog, state-of-the-art, ISO
standard compliant, Prolog development system.
https://sicstus.sics.se/

[Stabler 86] E. P. Stabler, Jr. Object-oriented programming in
PROLOG. AI Ezpert, pages 46-57, Oct. 1986.

[Steele 90] Steele G. L. "Common Lisp : the language" second
edition, Digital Press, 1990.

[Sterling 90] Sterling, L. et Shapiro, E. "L'Art de Prolog".
MASSON 1990.

[Stroustrup 92] Stroustrup, B. "Le Langage C++".
InterEditions 1992.

[SWI-Prolog 2017] SWI-Prolog pour le web sémantic / SWI-
Prolog for (sémantic) web, 2017.

[Uustalu 91] T.Uustalu, "Combination of Object-Oriented and
Logic Paradigms", Master of Engineering Thesis, Tallinn
Technical University, Written at the Dept. of Computer
Systems and Telematics, Apr-Aug 1991.

[Uustalu 92] T. Uustalu. Combining object-oriented and logic
paradigms: A modal logic programming approach. In O. L.
Madsen, editor, European Conference on Object-Oriented
Programming (ECOOP'92), pages 98-113, June 1992.

[Vaucher 88] J. Vaucher, G. Lapalme, and J. Malenfant.
SCOOP: Structured concurrent object-oriented Prolog. In
S. Gjessing and K. Nygaard, editors, ECOOP'88: Europ.
Conf. on Object-Oriented Programming(ECOOP'88), Proc.,
Oslo, Norway, 15-17 Aug 1988, pages 191-211.
Springer-Verlag, Berlin, 1988. (LNCS, 322).

[Warren 84] D. Warren. Database updates in pure PROLOG.
In Fifth Generation Computer Systems, pages 244-253.
ICOT, 1984.

[Zaniolo 84] Zaniolo, C. "Object-Oriented Programming in
Prolog". In Proc. of the IEEE Internatial Symposium on
Logic Programming, pp. 265-270, Atlantic City, New
Jersey, 1984.

2051 International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2036-2051, May, 2018
