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ABSTRACT 
 

In this paper, we introduce the first and second Revan polynomials of a molecular graph. We compute the first and second Revan 
indices and their polynomials of rhombus silicate and rhombus oxide networks. Also we determine the first Revan vertex index 
and third Revan index and their polynomials of rhombus silicate and rhombus oxide networks. 
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INTRODUCTION 
 

 

We consider only finite connected undirected without loops and multiple edges. Let G be a graph with vertex set V(G) and edge 
set E(G). Let dG(v) denote the number of vertices adjacent to v. Let GG)) denote the maximum (minimum) degree among 
the vertices of G. The Revan vertex degree of a vertex v in G is defined as rG(v)=(G) + (G) – dG(v). The Revan edge connecting 
the Revan vertices u and v will be denoted by uv. For other undefined notations and terminologies, we refer [Kulli, 2012]. 
A molecular graph is a graph whose vertices correspond to the atoms and the edges to the bonds. Chemical graph theory has an 
important effect on the development of chemical sciences. A single number that can be used to characterize some property of the 
graph of molecular is called a topological index. Several such topological indices have been considered in Theoretical Chemistry 
and have found some applications, especially in QSPR/QSAR study, see [Todeschini and Consonni,2009].  
 
In [Kulli,2017], the first and second Revan indices of a graph G are defined as 
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Considering Revan indices, we define the first and second Revan polynomials of a graph G as  
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The first Revan vertex index [Kulli,2017] of a graph G is defined as  
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The third Revan index [Kulli,2017] of a graph G is defined as  
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Considering the first Revan vertex index, we define the first Revan vertex polynomial as  
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Considering the third Revan index, we define the third Revan polynomial as  
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Recently other Revan indices were studied, for example, in (Kulli 2017) and also many topological indices were studied, for 
example, in (Kulli, 2016; Kulli, 2017). In this paper, some Revan indices and their polynomials of rhombus silicate networks and 
rhombus oxide networks are determined. For rhombus silicate networks and rhombus oxide networks see [19] and references cited 
therein. 
 

Results for Rhombus Silicate Networks 
 
We consider a family of rhombus silicate networks. A rhombus silicate network is symbolized by RHSLn. A 3-dimensional 
rhombus silicate network is depicted in Figure 1. 
 
 

 
 

Figure 1. A 3-dimensional rhombus silicate network 
 
In the following theorem, we compute the first Revan vertex index and its polynomial of rhombus silicate network. 
 

Theorem 1. Let G be the graph of rhombus silicate network RHSLn. Then  
 

R01(RHSLn) = 99n2 + 126n.                                                                                                                                                               (1) 
 
R01(RHSLn, x) = (2n2 + 4n)x36 + (3n2 – 2n)x9.                                                                                                                                   (2) 
 
Proof: Let G be the graph of RHSLn. By algebraic method, we obtain that G has 5n2+2n vertices. From Figure 1, it is easy to see 
that the vertices of RHSLn are either of degree 3 or 6. Thus (G) = 6, (G) = 3.  We partition V(RHSLn) into two sets, vertices of 
degree 3 and 6 respectively. 
 

V3 = {u V(G)| dG(u) = 3},  |V3| = 2n2 + 4n. 
V6 = {u V(G)| dG(u) = 6},  |V6| = 3n2 – 2n. 
Clearly, we have (G) + (G) = 9. Thus rG(u) = 9 – dG(u). 
 
Thus there are two types of Revan vertices as follows. 
 

Vr6 = {uV(G)| rG(u) = 6},  |Vr6| = 2n2 + 4n. 
Vr3 = {uV(G)| dG(u) = 3},  |Vr3| = 3n2 – 2n. 
 
1) To compute R01(RHSLn), we see that  
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2) To compute R01(RHSLn, x), we see that 
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We compute the value of R1(RHSLn), R2(RHSLn), R3(RHSLn) for rhombus silicate networks. 
 
Theorem 2. Let RHSLn be the rhombus silicate network. Then  
 
R1(RHSLn) = 90n2 + 36n.                                                                                                                                                                  (1) 
 
R2(RHSLn) = 162n2 + 144n + 18.                                                                                                                                                      (2) 

 
R3(RHSLn) = 18n2 + 12n – 12.                                                                                                                                                          (3) 

 
Proof: Let G be the graph of rhombus silicate network. By calculation, we obtain that G has 12n2 edges. In RHSLn, by algebraic 
method, there are three types of edges based on the degree of the end vertices of each edge as follows: 
 

E33 = {uvE(G)| dG(u) = dG(v) = 3},  |E33| = 4n + 2. 
 

E36 = {uv E(G)| dG(u) = 3, dG(v) = 6},   |E36| = 6n2 + 4n – 4. 
 

E66 = {uvE(G)| dG(u) = dG(v) = 6},  |E66| = 6n2 – 8n + 2. 
 

Clearly we have (G) = 6, (G) = 3. Thus rG(u) = 9 – dG(u). Thus there are three types of Revan edges based on the degree of the 
end revan vertices of each revan edge as follows: 
 

RE66 = {uv E(G)| rG(u) = rG(v) = 6},   |RE66| = 4n + 2. 
 

RE63 = {uv E(G)| rG(u) = 6, rG(v) = 3},  |RE63| = 6n2 + 4n – 4. 
 

RE33 = {uvE(G)| dG(u) = dG(v) = 3},   |RE33| = 6n2 – 8n + 2. 
 

(1) We compute R1(RHSLn), we see that  
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(2) To compute R2(RHSLn), we see that 
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(3) To compute R3(RHSLn) we see that 
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In the following theorem, we compute the value of R1(RHSLn, x), R2(RHSLn, x), R3(RHSLn, x) for rhombus silicate networks. 
Theorem 3. Let RHSLn be the rhombus silicate network. Then 
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1 , 4 2 6 4 4 6 8 2 .nR RHSL x n x n n x n n x                                                                                                       (1) 
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       36 2 18 2 9
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Proof: (1) Using the partition of the revan edge set, we can apply the formula of the first Revan polynomial of G. Since  
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this implies that 
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(2) Using the partition of the revan edge set, we can apply the formula of the second Revan polynomial of G. 
 

Since      
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this implies that 
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(3) Using the partition of the revan edge set, we can apply the formula of the third Revan index of G 
 

Since      
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this implies that  
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Results for Rhombus Oxide Networks 
 
We consider a family of rhombus oxide networks. A rhombus oxide network of dimension n is denoted by RHOXn. A rhombus 
oxide network of dimension 3 is depicted in Figure 2. 
 

 
 

Figure 2. Rhombus oxide network of dimension 3. 
 
In the following theorem, we compute the first Revan vertex index and its polynomial of rhombus oxide network. 
 
Theorem 4. Let RHOXn be the rhombus oxide network. Then  
 
R01(RHOXn) = 12n2 + 56n.                                                                                                                                                                  (1) 
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R01(RHOXn, x) = 4nx16 + (3n2 – 2n)x4.                                                                                                                                                (2) 
 
Proof: Let H be the graph of rhombus oxide network. By calculation, we obtain that H has 3n2+2n vertices. From Figure 2, it is 
easy to see that the vertices of RHOXn are either of degree 2 or 4. Thus H)=4 and (H)=2. We partition vertex set V(RHOXn) 
into two sets, vertices of degree 2 and 4 respectively. 
 

V2 = {u V(H)| dH(u) = 2},  |V2| = 4n. 
 

V4 = {u V(H)| dH(u) = 4},  |V4| = 3n2 – 2n. 
 

Clearly, we have (H) + (H) = 6. Thus rH(u) = 6 –dH(u).  
Thus there are two types of Revan vertices as follows: 
 
Vr4 = {u V(H)| rH(u) = 4},  |Vr4| = 4n. 
 
Vr2 = {u V(H)| rH(u) = 2},   |Vr2| = 3n2 – 2n. 
 
(1)Compute R01(RHOXn), we see that 
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(2)To compute R01(RHOXn, x), we see that  
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In the following theorem, we compute the value of R1(RHOXn), R2(RHOXn), R3(RHOXn) for rhombus oxide networks. 
 
Theorem 5. Let RHOXn be the rhombus oxide network. Then,  
 
R1(RHOXn) = 24n2 + 16n.                                                                                                                                                                   (1) 
  
R2(RHOXn) = 24n2 + 32n + 8.                                                                                                                                                             (2) 
 

R3(RHOXn) = 16n – 8.                                                                                                                                                                         (3) 
 
Proof: Let H be the rhombus oxide network. By calculation, we obtain that H has 6n2 edges. In RHOXn, by algebraic method, 
there are three types of edges based on the degree of the end vertices of each edge follows:  
 
E22 = {uvE(H)| dH(u) = dH(v) = 2},  |E22| = 2. 
 
E24 = {uv E(H)| dH(u) = 2, dH(v) = 4},   |E24| = 8n – 4. 
 
E44 = {uv E(H)| dH(u) = dG(v) = 4},  |E44| = 6n2 – 8n + 2. 
 
Clearly we have (H)=4 and (H)=2. Thus rH(u) = 6 – dH(u). Thus there are three types of Revan edges based on the degree of the 
end revan vertices of each revan edge as follows: 
 
RE44 = {uv E(H)| rH(u) = rH(v) = 4},   |RE44| = 2. 
 
RE42 = {uvE(H)| rH(u) = 4, dH(v) = 2},  |RE42| = 8n – 4. 
 
RE22 = {uv E(H)| rH(u) = rH(v) = 2},   |RE22| = 6n2 – 8n + 2. 
 

(1) To compute R1(RHOXn), we see that  

2114                             International Journal of Current Research in Life Sciences, Vol. 07, No. 05, pp. 2110-2116, May, 2018                                                                      
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 (2) To compute R2(RHOXn), we see that 
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(3) To compute R3(RHOXn), we see that 
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In the following theorem, we compute the value of R1(RHOXn, x), R2(RHOXn, x), R3(RHOXn, x) for rhombus oxide networks. 
Theorem 6. Let RHOXn be the rhombus oxide network. Then  
 

     8 6 2 4
1 , 2 8 4 6 8 2 .nR RHOX x x n x n n x                                                                                                                          (1) 

     16 8 2 4
2 , 2 8 4 6 8 2 .nR RHOX x x n x n n x                                                                                                                         (2) 

    2 2
3 , 8 4 6 8 4.nR RHOX x n x n n                                                                                                                                  (3) 

 
Proof : (1) Using the partition of the revan edge set, we can apply the formula of the first Revan polynomial of H. 
 

Since      

 
1 , ,H Hr u r v

uv E H

R H x x



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this implies that 
 

     8 6 2 4
1 , 2 8 4 6 8 2 .nR RHOX x x n x n n x       

 

(2) Using the partition of the revan edge set, we can apply the formula of the second Revan polynomial of H.  
 

Since      

 
2 , ,H Hr u r v

uv E H

R H x x


   

 

this implies that  
 

     16 8 2 4
2 , 2 8 4 6 8 2 .nR RHOX x x n x n n x       

 

(3) Using the partition of reven edge set, we can apply the formula of the third Revan polynomial of H. 
 

Since      

 
3 , ,H Hr u r v

uv E H

R H x x



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this implies that 
 

     0 2 2 0
3 , 2 8 4 6 8 2 .nR RHOX x x n x n n x       

   2 28 4 6 8 4.n x n n      
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