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ABSTRACT

Let Ms(u) denote the product of the degrees of all vertices adjacent to a vertex u. We introduce the first and second KV
indices, the first vertex KV index, the minus KV index and their polynomials of a molecular graph. In this paper, we compute
the first and second KV indices, and their polynomials, and minus KV index and its polynomial of tetrathiafulvalene
dendrimers and POPAM dendrimers.
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INTRODUCTION

Chemical Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of Chemical
Sciences. A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. In Organic
Chemistry, topological indices have been found to be useful in chemical documentation, isomer discrimination, structure property
relationships, structure activity relationships and pharmaceutical drug design. There has been considerable interest in the general
problem of determining topological indices.

Let G be a finite, simple connected graph with vertex set V(G) and edge set £(G). The degree ds(v) of a vertex v is the number of
vertices adjacent to v. Let M(v) denote the product of degrees of all vertices adjacent to a vertex v. The edge connecting vertices u

and v will be denoted by uv. For other definitions and notations, readers are referred to [1].

We introduce the first and second KV indices of a graph G as

KV (G)= > [Mg(u)+Mg(v)] M
uveE(G)

and

K1y (G)= >, )MG Mg(v) 2)
uveE

Recently, in [2] the first and second K Banhatti indices, in [3] the first and second Gourava indices, in [4] the first and second
Revan indices, in [5] the first and second reverse indices, in [6] the first and second ve-degree indices were introduced and studied.
Considering the KV indices, we propose the first and second KV polynomials of a graph G as

KV (Gx)= 3 xMelwMelv) 3)
uveE(G)

and

Ky (Gx)= 3 xMolnMel) “)
uveE(G)
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Recently, some polynomials were studied, for example, in [7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
The first vertex KV index of a graph G is defined as

KV (G)= Y Mg ). (5)
uel(G)

Considering the first vertex KV index, we propose the first KV vertex polynomial of a graph G as

KV (Gox)= 3 Mol (6)
ueV(G)

The minus KV index of a graph G is defined as

uveE(G)

Considering the minus KV index, we define the minus KV polynomial of a graph G as

KVm (G,X) _ z x‘MG(u)_MG(V)‘. (8)
uveE(G)

In this paper, we consider the families of tetrathiafulvalene dendrimers and POPAM dendrimers, see [19]. In this paper, the first
and second KV indices, and their polynomials, and the minus KV index and its polynomial of two families of dendrimers are
computed.

RESULTS FOR TETRATHIAFULVALENE DENDRIMERS 7D,[n]

In this section, we focus on the molecular graph of a tetrathiafulvalene dendrimer. This family of tetrathiafulvalene dendrimers is
denoted by TD,[n], where n is the steps of growth in this type of dendrimers for n 0. The molecular graph of 7D,[2] is shown in
Figure 1.

Figure 1. The molecular graph of 7D,|2]

Let G be the molecular graph of tetrathiafulvalene dendrimers 7D,[n]. By calculation, we obtain that G has 31x2"% — 74 vertices

and 35x2"" — 85 edges. Also the edge partition of 7D,[n] based on the degree product of neighbors of end vertices of each edge is
obtained as given in Table 1.

Table 1. Edge partition of 7D,[n]

Mo(u), Mo(v)\uv E(G) Number of edges
(2, 3) 2"}2
(3, 6) 224
(3’ 8) 2/1+2
(6, 6) 7x2"2_16
(6, 8) 11x272 - 24
(6,9) 224
(6, 12) 3x2m2_8
9, 12) 82224

(12, 12) 2x2"2_ 5
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Theorem 1. The first and second KV indices of a tetrathiafulvalene dendrimer 7D,[n] are given by

(a) KV, (TD,[n])=542x 2" —1392.
(b) KV, (TD,[n])=2250x2"** - 5904.

Proof: Let G be the graph of a tetrathiafulvalene dendrimer 7D,[n].

(a)By using equation (1) and Table 1, we derive

KV (TD,[n])= " [MG u)+Mg(v)]

uveE

=2+ 3)2"+2 +3+6)(2? —4) + (3+8)2" % + (6+6)(7x2"2 ~16)
+(6+8)(11x2"2 ~24) + (6+9)(2"% ~4) + (6 +12)(3x 2"*? —8)
1(9+12)(8x2"2 —24) + (12 +12)(2x 22 —5)

=542%2"% ~1392.

(b)By using equation (2) and Table 1, we derive

KV, (TD,[n])= > Mg (u)Ms(v)

weE(G)
=(2x3)2"2 + (3x6) (22 —4) + (3x8)2"2 + (6x 6) (7x 22 ~16)
+(6x8)(11x2"2 ~24) + (6x9) (22 - 4) + (6x12)(3x 2" -8)
+(9x12)(8x 272 - 24) + (12x12)(2x 22 - 5)
=2250x 2" ~5904.

Theorem 2. The first and second KV polynomials of a tetrathiafulvalene dendrimer 7D,[n] are given by

@ KV (TDyln]x)=2"22" +(2"2 —4)x® + 22! 4 (7x2"*2 ~16) 2"

F(11x2m2 2 24) x4 (272 —4) x5 + (3% 22 —8) &8
+(8X2ﬂ+2 _24)x21 +(2X2ﬂ+2 _5)x24

® KV (TD,[n],x) =2"2x0 (272 —4) 2! 427222 1 (7x2"2 —16) %

F(11x2m2 224) ¥ (272 —4) x5 +(3x 22 _8) X2
+(8>< o2 _24)x108 +(2>< 9n+2 —5)x144.

Proof: Let G be the graph of a tetrathiafulvalene dendrimer 7D,[n].

(a)By using equation (3) and Table 1, we derive

KA (D))= 3 St

uveE(G)
=2m255 1 (272 2 4) 0 + 22 1 (7% 272 —16) 62 + (1% 272 —24) x4
+(2n+2 _4)x15 +(3X2n+2 _8)x18 +(8X2n+2 _24)x21 +(2X2}’l+2 _5)x24

(b)By using equation (4) and Table 1, we derive

KV (TDy[n],x)= Y xMolMelt)
uveE(G)

=225 1 (272 —4) 118 4 27252 1 (7% 272 216) 230 + (11x 2772 — 24) 18
+(22 —4) % + (3% 272 —8)x7? +(8x 2% —24) x1% 4+ (2% 272 —5) x!*4,
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Theorem 3. The minus KV index and its polynomial of a tetrathiafulvalene dendrimer 7D,[n] are given by

(a) KV, (TD,[n])=76%2"** -192.
® KV, (TD,[n],x)=(9x2"2 —21)x® + 27 2x +(11x 272 ~24)
+(10x2m2 =32) 5 +272 x5 + (322 —8) x°.

Proof: Let G be the graph of a tetrathiafulvalene dendrimer 7D,[n].

(a)By using equation (7) and Table 1, we derive
KV, (TD,[nl)= 3" |Mg(u)-Mg(v)|
weE(G)
=1x2"2 +3x (272 —4) + 5% 272 + 0x (7% 272 —16) + 2x (11x 2"*2 — 24)
3% (272 —4)+6x(3x 272 —8) +3x(8x 272 —24) + 0x (2% 2"*2 —5)
=76x2"? ~192.

(b)By using equation (8) and Table 1, we derive

KV, (TD,[nl,x)= 3" oMo ()= (v)
uveE(G)

=220 (272 2 4) 427255 4 (7272 —16) 0 + (1% 272 —24) 2
+(272 —4) ¥} + (3% 272 —8)x0 +(8x 272 —24) x* + (2% 272 = 5)x”
=(9%2"2 —21)x% + 2725 4 (11x2"*% - 24) 2
+(10x2™2 -32) 2 +2" 22 + (3272 - 8)x°.

Results for POPAM DENDRIMERS POD;|n]

In this section, we focus on the molecular graph of POPAM dendrimers. This family of dendrimers is denoted by POD,[n], where
n is the steps of growth in this type of dendrimers. The molecular graph of POD,[2] is presented in Figure 2.

N N
N~ K g V\’NV\__.NH
N\/\r/\‘p‘
HN’-\/\ f i
NS N’\/\NMNH

Figure 2. The graph of POPAM dendrimer POD;,|2]

Let G be the molecular graph of POPAM dendrimers POD;[n]. By calculation, we obtain that G has 2" — 10 and 2" — 11 edges.
The edge partition of POD,[n] based on the degree product of neighbors of end vertices of each edge is obtained as given in Table
2.

Table 2. Edge partition of POD,|[n]

Mo(w), Mo(v)\uv E(G) (2,2) (2,4 4.4 (4,6 (6,8)
Number of edges 22 22 1 3x2"—6 3x2"— 6
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In the following theorem, we compute the values of KV (POD,[n]) and KV,(POD;[n]).
Theorem 4. The first and second KV indices of a POPAM dendrimer 7D,[n] are given by
(a) KV, (POD,[n])=82x2"* -136.

(b) KV, (POD,[n])=230x2"" - 416.

Proof: Let G be the graph of a POPAM dendrimer POD,[n].

(a)By using equation (1) and Table 2, we deduce

KV, (POD,[n])= ( )[MG u)+ Mg (v)]
uveE(G

=(2+2)2™ +(2+4)2" 2 +(4+4)+(4+6)(3x2"? —6) + (6+8)(3x2"*? —6)
=82x 2" —136.

(b)By using equation (2) and Table 2, we deduce

KV, (TD,[n])= MG a(v)

uveE
=(2x2)2”+2 +(2x4)2"2 +(4x4)+(4x6)(3x2"*% —6) + (6x8)(3x 2" —6)
=230%x2""* - 416.

In the following theorem, we compute the values of KV(POD;[n], x) and KV,(POD,[n], x).

Theorem 5. The first and second KV polynomials of a POPAM dendrimer 7D,[n] are given by
(a) KV, (POD2 [n],x) =225t 127250 1 28 1 (3x 272~ 6) 510 +(3x 272 —6) 1M
(b) KV, (POD2 [n],x) Z 0204 o2 8 L 16 L (35042 )3 24 4 (3272 ) ¢ %
Proof: Let G be the graph of a POPAM dendrimer POD,[n].

(a)By using equation (3) and Table 2, we derive

KV, (POD,[n],x)= 3 (MM ()]
uveE(G)

_ 2n+2x2+2 i 2n+2x2+4 +x4+4 +(3>< 2n+2 —6)x4+6 +(3>< 2n+2 _6)x6+8

—nt2x4 L on2 6 L8 L (3522 _6) 10 1 (3% 22 —6) x4,

(b)By using equation (4) and Table 2, we derive

KV, (POD,[nl,x)= Y " ()Mo
uveE(G)

2, 2X2 | o2 Dxd L Axd (3 M2 _ 6)x4><6 i (3 X QM2 _ 6)x6><8

—m2 4 o2 8 16 L (3502 L) x4 4 (322 —6) xS,

We now compute the values of KV (POD,[n]) and KV,(POD;[n], x).
Theorem 6. The minus KV index and its polynomial of a POPAM dendrimer POD,[n] are given by

@ KV, (POD,[n])=14x2""?-24.
® KV, (POD,[n],x)=(7x2"2 ~12)x? + (272 +1)x°.

Proof: Let G be the graph of a POPAM dendrimer POD,[n].
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(2)By using equation (7) and Table 2, we derive

KV, (POD, [nl)= % Mg (u)-Mg(v)|

uveE(G)
—0x2™2 42x2™2 4 0x1+2(3x2"2 —6)+2(3x 272 —6)
=14x2"? _24.

(b)By using equation (8) and Table 2, we obtain

KVm (P0D2 [}’l],X) = X‘MG(M)fMG(V)‘
uveE(G)

=220 12" 110 1 (3x 277 —6)x? +(3x 272 —6) 2
=(7%x22 —12) 2% + (272 +1)x°.
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