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ABSTRACT 
 

Let MG(u) denote the product of the degrees of all vertices adjacent to a vertex u. We introduce the first and second KV 
indices, the first vertex KV index, the minus KV index and their polynomials of a molecular graph. In this paper, we compute 
the first and second KV indices, and their polynomials, and minus KV index and its polynomial of tetrathiafulvalene 
dendrimers and POPAM dendrimers. 
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INTRODUCTION 
 

Chemical Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of Chemical 
Sciences. A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. In Organic 
Chemistry, topological indices have been found to be useful in chemical documentation, isomer discrimination, structure property 
relationships, structure activity relationships and pharmaceutical drug design. There has been considerable interest in the general 
problem of determining topological indices. 
 
Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). The degree dG(v) of a vertex v is the number of 
vertices adjacent to v. Let MG(v) denote the product of degrees of all vertices adjacent to a vertex v. The edge connecting vertices u 
and v will be denoted by uv. For other definitions and notations, readers are referred to [1]. 
 
We introduce the first and second KV indices of a graph G as 
 

     
 

1 G G
uv E G

KV G M u M v


                                                                                                                                                (1) 

and 

     
 

2 G G
uv E G

KV G M u M v


                                                                                                                                                    (2) 

 
Recently, in [2] the first and second K Banhatti indices, in [3] the first and second Gourava indices, in [4] the first and second 
Revan indices, in [5] the first and second reverse indices, in [6] the first and second ve-degree indices were introduced and studied. 
Considering the KV indices, we propose the first and second KV polynomials of a graph G as 
 

     

 
1 , G GM u M v

uv E G

KV G x x




                                                                                                                                                     (3) 

and 

     

 
2 , G GM u M v

uv E G

KV G x x


                                                                                                                                                      (4) 
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Recently, some polynomials were studied, for example, in [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. 
 
The first vertex KV index of a graph G is defined as 
 

   
 

2
01 .G

u V G

KV G M u


                                                                                                                                                              (5) 

 
Considering the first vertex KV index, we propose the first KV vertex polynomial of a graph G as 
 

   

 

2

01 , .GM u

u V G

KV G x x


                                                                                                                                                             (6) 

 
The minus KV index of a graph G is defined as 
 

     
 

.m G G
uv E G

KV G M u M v


                                                                                                                                             (7) 

 
Considering the minus KV index, we define the minus KV polynomial of a graph G as 
 

 
   

 
, .G GM u M v

m
uv E G

KV G x x




                                                                                                                                                  (8) 

 
In this paper, we consider the families of tetrathiafulvalene dendrimers and POPAM dendrimers, see [19]. In this paper, the first 
and second KV indices, and their polynomials, and the minus KV index and its polynomial of two families of dendrimers are 
computed. 
 
RESULTS FOR TETRATHIAFULVALENE DENDRIMERS TD2[n] 
 
In this section, we focus on the molecular graph of a tetrathiafulvalene dendrimer. This family of tetrathiafulvalene dendrimers is 
denoted by TD2[n], where n is the steps of growth in this type of dendrimers for n 0. The molecular graph of TD2[2] is shown in 
Figure 1.  

 
 

Figure 1. The molecular graph of TD2[2] 
 
Let G be the molecular graph of tetrathiafulvalene dendrimers TD2[n]. By calculation, we obtain that G has 31×2n+2 – 74 vertices 
and 35×2n+2 – 85 edges. Also the edge partition of TD2[n] based on the degree product of neighbors of end vertices of each edge is 
obtained as given in Table 1. 
 

Table 1. Edge partition of TD2[n] 
 

MG(u), MG(v)\uv E(G) Number of edges 

(2, 3) 2n+2 
(3, 6) 2n+2

 – 4  

(3, 8) 2n+2
  

(6, 6) 7×2n+2
 – 16  

(6, 8) 11×2n+2
 – 24 

(6, 9) 2n+2
 – 4 

(6, 12) 3×2n+2
 – 8 

(9, 12) 8×2n+2
 – 24  

(12, 12) 2×2n+2
 – 5  
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Theorem 1. The first and second KV indices of a tetrathiafulvalene dendrimer TD2[n] are given by 
 

(a)    2
1 2 542 2 1392.nKV TD n     

(b)    2
2 2 2250 2 5904.nKV TD n     

 
Proof: Let G be the graph of a tetrathiafulvalene dendrimer TD2[n]. 
 
(a)By using equation (1) and Table 1, we derive 
 

      
 

1 2 G G
uv E G

KV TD n M u M v


      

              2 2 2 2(2 3)2 (3 6) 2 4 (3 8)2 (6 6) 7 2 16n n n n               

                    2 2 2(6 8) 11 2 24 (6 9) 2 4 (6 12) 3 2 8n n n              

                  2 2(9 12) 8 2 24 (12 12) 2 2 5n n          

           2542 2 1392.n    
 
(b)By using equation (2) and Table 1, we derive 
 

      
 

2 2 G G
uv E G

KV TD n M u M v


   

               2 2 2 2(2 3)2 (3 6) 2 4 (3 8)2 (6 6) 7 2 16n n n n               

                    2 2 2(6 8) 11 2 24 (6 9) 2 4 (6 12) 3 2 8n n n              

                  2 2(9 12) 8 2 24 (12 12) 2 2 5n n          

                         22250 2 5904.n    
 
Theorem 2. The first and second KV polynomials of a tetrathiafulvalene dendrimer TD2[n] are given by 
 

(a)       2 5 2 9 2 11 2 12
1 2 , 2 2 4 2 7 2 16n n n nKV TD n x x x x x           

       2 14 2 15 2 1811 2 24 2 4 3 2 8n n nx x x           

     2 21 2 248 2 24 2 2 5 .n nx x        

 

(b)       2 6 2 18 2 24 2 36
2 2 , 2 2 4 2 7 2 16n n n nKV TD n x x x x x           

       2 48 2 54 2 7211 2 24 2 4 3 2 8n n nx x x           

     2 108 2 1448 2 24 2 2 5 .n nx x        

 
Proof: Let G be the graph of a tetrathiafulvalene dendrimer TD2[n]. 
 
(a)By using equation (3) and Table 1, we derive 
 

      

 
1 2 , G GM u M v

uv E G

KV TD n x x
  



   

                     2 5 2 9 2 11 2 12 2 142 2 4 2 7 2 16 11 2 24n n n n nx x x x x               

                          2 15 2 18 2 21 2 242 4 3 2 8 8 2 24 2 2 5n n n nx x x x               

 
 (b)By using equation (4) and Table 1, we derive 

      

 
2 2 , G GM u M v

uv E G

KV TD n x x


   

                     2 6 2 18 2 24 2 36 2 482 2 4 2 7 2 16 11 2 24n n n n nx x x x x               

                          2 54 2 72 2 108 2 1442 4 3 2 8 8 2 24 2 2 5 .n n n nx x x x               
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Theorem 3. The minus KV index and its polynomial of a tetrathiafulvalene dendrimer TD2[n] are given by 
 

(a)    2
2 76 2 192.n

mKV TD n     

(b)       2 0 2 1 2 2
2 , 9 2 21 2 11 2 24n n n

mKV TD n x x x x          

     2 3 2 5 2 610 2 32 2 3 2 8 .n n nx x x          

 
Proof: Let G be the graph of a tetrathiafulvalene dendrimer TD2[n]. 
 
(a)By using equation (7) and Table 1, we derive 
 

      
 

2m G G
uv E G

KV TD n M u M v


   

                  2 2 2 2 21 2 3 2 4 5 2 0 7 2 16 2 11 2 24n n n n n                    

                     2 2 2 23 (2 4) 6 3 2 8 3 8 2 24 0 2 2 5n n n n                   

             276 2 192.n    
 
(b)By using equation (8) and Table 1, we derive 
 

      

 
2 , G GM u M v

m
uv E G

KV TD n x x




   

                      2 1 2 3 2 5 2 0 2 22 2 4 2 7 2 16 11 2 24n n n n nx x x x x               

         2 3 2 6 2 3 2 02 4 3 2 8 8 2 24 2 2 5n n n nx x x x               

                    2 0 2 1 2 29 2 21 2 11 2 24n n nx x x          

     2 3 2 5 2 610 2 32 2 3 2 8 .n n nx x x          
 
Results for POPAM DENDRIMERS POD2[n] 
 
In this section, we focus on the molecular graph of POPAM dendrimers. This family of dendrimers is denoted by POD2[n], where 
n is the steps of growth in this type of dendrimers. The molecular graph of POD2[2] is presented in Figure 2.  
 

 
 

Figure 2. The graph of POPAM dendrimer POD2[2] 
 

Let G be the molecular graph of POPAM dendrimers POD2[n]. By calculation, we obtain that G has  2n+5 – 10 and 2n+5 – 11 edges. 
The edge partition of POD2[n] based on the degree product of neighbors of end vertices of each edge is obtained as given in Table 
2. 
 

Table 2. Edge partition of POD2[n] 
 

MG(u), MG(v)\uv E(G) (2, 2) (2, 4) (4, 4) (4, 6) (6, 8) 

Number of edges 2n+2
 2n+2 1 3×2n – 6 3×2n – 6 
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In the following theorem, we compute the values of KV1(POD2[n]) and KV2(POD2[n]). 
 
Theorem 4. The first and second KV indices of a POPAM dendrimer TD2[n] are given by 
 

(a)    2
1 2 82 2 136.nKV POD n     

(b)    2
2 2 230 2 416.nKV POD n     

 
Proof: Let G be the graph of a POPAM dendrimer POD2[n]. 
 
(a)By using equation (1) and Table 2, we deduce 
 

      
 

1 2 G G
uv E G

KV POD n M u M v


      

                    2 2 2 2(2 2)2 (2 4)2 4 4 (4 6) 3 2 6 (6 8) 3 2 6n n n n                  

               282 2 136.n    
 
(b)By using equation (2) and Table 2, we deduce 
 

      
 

2 2 G G
uv E G

KV TD n M u M v


   

                 2 2 2 2(2 2)2 (2 4)2 4 4 (4 6) 3 2 6 (6 8) 3 2 6n n n n                  

            2230 2 416.n    
 
In the following theorem, we compute the values of KV1(POD2[n], x) and KV2(POD2[n], x). 
 
Theorem 5. The first and second KV polynomials of a POPAM dendrimer TD2[n] are given by 
 

(a)       2 4 2 6 8 2 10 2 14
1 2 , 2 2 3 2 6 3 2 6n n n nKV POD n x x x x x x             

(b)       2 4 2 8 16 2 24 2 48
2 2 , 2 2 3 2 6 3 2 6n n n nKV POD n x x x x x x             

 
Proof: Let G be the graph of a POPAM dendrimer POD2[n]. 
 
(a)By using equation (3) and Table 2, we derive 
 

      

 
1 2 , G GM u M v

uv E G

KV POD n x x
  



   

                      2 2 2 2 2 4 4 4 2 4 6 2 6 82 2 3 2 6 3 2 6n n n nx x x x x                  

                      2 4 2 6 8 2 10 2 142 2 3 2 6 3 2 6 .n n n nx x x x x             

  
(b)By using equation (4) and Table 2, we derive 
 

      

 
2 2 , G GM u M v

uv E G

KV POD n x x


   

     2 2 2 2 2 4 4 4 2 4 6 2 6 82 2 3 2 6 3 2 6n n n nx x x x x                  

     2 4 2 8 16 2 24 2 482 2 3 2 6 3 2 6 .n n n nx x x x x             

 
We now compute the values of KV1(POD2[n]) and KV2(POD2[n], x). 
Theorem 6. The minus KV index and its polynomial of a POPAM dendrimer POD2[n] are given by 
 

(a)    2
2 14 2 24.n

mKV POD n     

(b)       2 2 2 0
2 , 7 2 12 2 1 .n n

mKV POD n x x x       

 
Proof: Let G be the graph of a POPAM dendrimer POD2[n]. 
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(a)By using equation (7) and Table 2, we derive 
 

      
 

2m G G
uv E G

KV POD n M u M v


   

                   2 2 2 20 2 2 2 0 1 2 3 2 6 2 3 2 6n n n n                

                214 2 24.n    
 
(b)By using equation (8) and Table 2, we obtain 
 

      

 
2 , G GM u M v

m
uv E G

KV POD n x x




   

     2 0 2 2 0 2 2 2 22 2 3 2 6 3 2 6n n n nx x x x x             

     2 2 2 07 2 12 2 1 .n nx x       
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