Green synthesis of silver nanoparticles by using aspergillus fumigatus and their antibacterial activity

Author: 
Kalyani, P., Lakshmi, B.K.M., Dinesh Reddy, G. and Hemalatha, K.P.J.
Abstract: 

Antibiotic resistance is one of the world’s most pressing public healthcare problems. People who become infected with drug-resistant microorganisms usually spend more time in the hospital and require a form of treatment that uses two or three different antibiotics and is less effective, more toxic, and more expensive. Silver nanoparticles (AgNPs) are attractive option because they are non-toxic to the human body at low concentrations and have broadspectrum antibacterial actions. The biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In this report, silver nanoparticles (AgNPs) were synthesized using a reduction of aqueous Ag+ ion with the culture supernatants of Aspergillus fumigatus . The reaction occurred at ambient temperature and in a few hours. The bioreduction of AgNPs was monitored by ultraviolet-visible spectroscopy, and the AgNPs obtained were characterized by transmission electron microscopy and X-ray diffraction. Furthermore, the antimicrobial potential of AgNPs was systematically evaluated. The synthesized AgNPs could efficiently inhibit various pathogenic organisms, including bacteria and fungi. The current research opens a new avenue for the green synthesis of nano-materials and AgNPs have the potential to serve as an alternative to antibiotics and to control microbial infections such as those caused by multidrug- resistant pathogens.

Download PDF: