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ABSTRACT 
 

We propose the modified first leap index, leap inverse degree, leap zeroth order index, the general first leap Zagreb index of a 
graph. Furthermore, we compute the modified first leap index, F-leap index, leap zeroth order index and general first leap Zagreb 
index of certain wheel related graphs such as wheels, gear graphs, helm graphs, flower graphs and sunflower graphs. 
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INTRODUCTION 
 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The distance d(u, v) between any two vertices u 
and v of G is the length of a shortest path connecting them. For a positive integer k, the open k-neighborhood Nk(v) of a vertex v in 
G is defined as Nk(v/G) = {u  V(G) : d(u, v) = k}. The k-distance degree dk(v) of v in G is defined as the number of k neighbors of 
v in G. The degree d(v) of a vertex v is the number of edges incident to v. We refer to [Kulli, 2012] for undefined term and 
notation. 
The total 2-distance degree of a graph G is defined as  
 

 

 
The first leap Zagreb index of G is defined as 
 

 

 
This index was introduced in [Naji, 2017]. 
 
We propose the following the leap Zagreb indices. The modified first leap index of G is defined as 
 

 

 
The F-leap index of G is defined as 
 

 

 
The leap inverse degree of G is defined as 
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The leap zeroth order index of G is defined as 
 

 

 
The general first leap Zagreb index of G is defined as 
 

  (1) 

 
where a is a real number. 
 
Furthermore, we propose the first leap polynomial and F-leap polynomial of G as 
 

 (2) 

 

  (3) 

 
Recently, some leap indices were studied such as leap hyper Zagreb indices [Kulli, 2018], minus leap and square leap indices 
[Kulli, 2018], F-leap indices [Kulli, 2018], sum connectivity leap and geometric-arithmetic leap indices [Kulli], product 
connectivity leap index and ABC leap index [Kulli, 2018], multiplicative leap and multiplicative hyper leap indices [8], 
augmented leap index [Kulli]. Very recently, some new polynomials were introduced and studied, for example, in [Kulli, 2017 and 
2018].  In this paper, wheel graphs and wheel type graphs are considered, see [Shiladhar, 2018]. The modified first leap index, 
leap zeroth order index, F-leap index, general first leap Zagreb index of wheel, gear, helm, flower, sunflower graphs are computed. 
 

RESULTS FOR WHEELS 
 
The wheel Wn+1 is defined to be the graph K1+Cn, n3. The wheel Wn+1 has n+1 vertices and 2n edges. The vertices of Cn are called 
rim vertices and the vertex of K1 is called apex. 

 
 

Figure 1. Wheel Wn+1 
 

Let G = Wn+1. There are two types of the 2-distance degree of vertices in Wn+1 as follows: 
   
V1={ u  V(G) | d2(u) = 0}, |V1| = 1. 
 
V2= {u  V(G)| d2(u) = n – 3} |V2| = n. 
 
Theorem 1. The general first leap Zagreb index of Wn+1 is  
 

   (4) 
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Proof: Let Wn+1 be a wheel with n  3 vertices. From equation (1) and by cardinalities of the 2-distance degree of vertex partition 
of Wn+1, we have 
 

 

 

 

 
 
From Theorem 1, we establish the following results. 
 
Corollary 1.1. [24] The first leap Zagreb index of Wn+1 is  
 

 

 
Corollary 1.2. The modified the first leap Zagreb index of Wn+1 is  
 

 

 
Corollary 1.3. The F-leap index of Wn+1 is 
 

 
 
Corollary 1.4. The leap inverse degree of Wn+1 is  
 

 

Corollary 1.5. The leap zeroth-order index of Wn+1 is  

 

 
 
Put a = 2, – 2, 3, –1, – ½ in equation (4), we get the above results respectively. 
 
Theorem 2. Let Wn+1 be a wheel with n+1 vertices, n3. Then  
 

i)  

ii)  

 
Proof: (i) From equation (2) and by cardinalities of the 2-distance degree of vertex partition, we obtain  
 

 

  
  
From equation (3) and by cardinalities of the 2-distance degree of vertex partition, we have  
 

 

        
 

RESULTS FOR GEAR GRAPHS 
 
A bipartite wheel graph is a graph obtained from Wn+1 by adding a vertex between each pair of adjacent rim vertices and it is 
denoted by Gn, also called as a gear graph. Clearly |V(Gn)|=2n+1 and |E(Gn)| = 3n. 
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Figure 2. Gear graph Gn 
 
  
There are three types of the 2-distance degree of vertices in Gn as follows: 
 
V1 = {uV(Gn)| d2(u) = n}, |V1| = 1. 
V2 = {uV(Gn) | d2(u) = n – 1}, |V2| = n. 
V3 = {uV(Gn)| d2(u) = 3}, |V3| = n. 
 
Theorem 3. The general first leap Zagreb index of Gn is 
 

  (5) 

 
Proof: Let Gn be a gear graph with 2n+1 vertices, n3. From equation (1) and by cardinalities of the 2-distance degree of vertex 
partition of Gn, we obtain 
 

 

 

 
 
From Theorem 3, we obtain the following results. 
 
Corollary 3.1. [24] The first leap Zagreb index of Gn is  
 

 

 
Corollary 3.2. The modified the first leap Zagreb index of Gn is  
 

 

 
Corollary 3.3. The F-leap index of Gn is  
 

 

 
Corollary 3.4. The leap inverse degree of Gn is 
 

 

 
Corollary 3.5. The leap zeroth-order index of Gn is 
 

 

( ) ( )
1 1 3 .

aa a a
nLM G n n n n= + - +

( ) ( )
( )

1 2

n

a a
n

u V G

LM G d u
Î

= å

( ) ( ) ( )

1 2 3

2 2 2
a a a

u V u V u V

d u d u d u
Î Î Î

= + +å å å

( )1 3 .
aa an n n n= + - + ´

( ) ( )2
1 10 .nLM G n n n= - +

( )
( )

1 2 2

1
.

91

m
n

n n
LM G

n n
= + +

-

( ) ( )3 22 3 26 .nFL G n n n n= - + +

( )
1

.
1 3

n

n n
LID G

n n
= + +

-

( )
1 1

.
1 3

n

n
LZ G

n n
= + +

-

3001                                   International Journal of Current Research in Life Sciences, Vol. 08, No. 01, pp.2998-3006, January, 2019 
                                                                      



Put a = 2, – 2, 3, –1, –½ in equation (5), we obtain the above results respectively. 
 
Theorem 4. Let Gn be a gear graph with 2n+1 vertices, n3. Then 
 

i)  

ii)  

 
Proof: (i) From equation (2) and by cardinalities of the 2-distance degree of vertex partition, we have  
 

 

  
  
From equation (3) and by cardinalities of the 2-distance degree of vertex partition, we deduce 
 

 

  
 

RESULTS FOR HELM GRAPHS 
 
A helm graph Hn is a graph obtained from Wn+1 by attaching an end edge to each rim vertex. Clearly |V(Hn)|=2n+1 and |E(Hn)|=3n. 

 

 
Figure 3. Helm graph Hn 

 

 
There are three types of the 2-distance degree of vertices in Hn as follows. 
 
V1 = {uV(Hn)| d2 (u) = n}  |V1| = 1. 
V2= {uV(Hn) | d2(u) = n –1}  |V2| = n. 
V3 ={uV(Hn)| d2(u) = 3}  |V3| = n. 
 
The 2-distance degree of vertices of Hn and Gn are same. Therefore we have the following results.  
 
Theorem 5. 
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(ii)  see [24].  
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(v)  

(vi)  

(vii)   

(viii)  

 

RESULTS FOR FLOWER GRAPHS 
 
The graph Fln is a flower graph obtained from a helm graph by joining an end vertex to the apex of the helm graph. The graph Fln 
has 2n+1 vertices and 4n edges. 

 
 

Figure 4. Flower graph Fln. 
 

There are three types of 2 distance degree of vertices in Fln as follows: 
 
V1 = {uV(Fln) | d2 (u) = 0}  |V1| = 1. 
V2= {uV(Fln) | d2(u) = n –5}  |V2| = n. 
V3 ={uV(Fln )| d2(u) = n –2}  |V3| = n. 
 
Theorem 6. The general first leap Zagreb index of Fln is  
 

  (6) 

 
Proof: Let Fln be a flower graph with 2n+1 vertices, n3. From equation (1) and by cardinalities of the 2-distance degree of vertex 
partition of Fln, we have 
 

 

 

 

 
 
From Theorem 6, we have the following results. 
 
Corollary 6.1. [24] The first leap Zagreb index of Fln is  
 

 

 
Corollary 6.2. The modified the first leap Zagreb index of Fln is  
 

 

 
Corollary 6.3. The F-leap index of Fln is 
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FL(Fln) = n(n-5)3 + n(n-2)2 
 
Corollary 6.4. The leap inverse degree of Fln is  
 

 

 
Corollary 6.5. The leap zeroth order index of Fln is 
 

 

 
Put a = 2, – 2, 3, –1, –½ in equation (6), we get the above results respectively. 
 
Theorem 7. Let Fln be a flower graph with 2n+1 vertices. Then 
 

i)  

ii)  

 
Proof: (i) From equation (2) and by cardinalities of the 2-distance degree of vertex partition, we derive  
 

 

  
  
From equation (3) and by cardinalities of the 2-distance degree of vertex partition, we deduce 
 

 

  
 

RESULTS FOR SUNFLOWER GRAPHS 
 
The graph Sfn is a sunflower graph obtained from Fln by attaching n end edges to the apex vertex. The graph Sfn has 3n+1 vertices 
and 5n edges. 

 
 

Figure 5. Sunflower graph Sfn 

 
There are four types of the 2 distance degree of vertices in Sfn as follows. 
 
V1 = {u V(Sfn) | d2(u) = 0}  |V1| = 1 
V2 = {u V(Sfn) | d2(u) = 3n – 4}  |V2| = n 
V3 = {u V(Sfn) | d2(u) = 3n – 2}  |V3| = n 
V4 = {u V(Sfn) | d2(u) = 3n – 1}  |V4| = n. 
 
Theorem 8. The general first leap Zagreb index of Sfn is  
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���
�(���)	 = 	�(3� − 4)�	 + �(3� − 2)�	 + �(3� − 1)�	  (7) 

 
Proof: Let Sfn be a sunflower graph with 2n+1 vertices. From equation (1) and by cardinalities of the 2-distance degree of vertex 
partition of Sfn, we have 
 

 

  

  

  
 
From Theorem 8, we obtain the following results. 
 
Corollary 8.1. [24] The first leap Zagreb index of Sfn is  
 
���(���)	 = 	3�(9�� − 14� + 7) 
 
Corollary 8.2. The modified the first leap Zagreb index of Sfn is 
 

 

 
Corollary 8.3. The F-leap index of Sfn is  
 

 

 
Corollary 8.4. The leap inverse degree of Sfn is 
 

 

 
Corollary 8.5. The leap zeroth-order index of Sfn is  
 

 

 
Put a = 2, – 2, 3, –1, –1, –½ is equation (7), we obtain the above results respectively. 
 
Theorem 9. Let Sfn be a sunflower graph with 3n + 1 vertices. Then  
 

i)  

ii)  

 
Proof: (i) From equation (2) and by cardinalities of the 2-distance degree of vertex partition, we derive  
 

 

  
  
(ii) From equation (3) and by cardinalities of the 2-distance degree of vertex partition, we deduce 
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